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3 minutes: nucleosynthesis
few months: thermalization

Fig. 1. A brief thermal history: nucleosynthesis, thermalization, recombination and reionization. Adapted
from Hu and White (2004).

of 109K and redshift of z ⇠ 108

� 109. This is the epoch of nucleosynthesis, the formation of the
light elements. The qualitative features of nucleosynthesis are set by the low baryon-photon number
density of our universe. Historically, the sensitivity to this ratio was used by Gamow and collaborators
in the late 1940’s to predict the existence and estimate the temperature of the CMB. Its modern use
is the opposite: with the photon density well measured from the CMB spectrum, the abundance of
light elements determines the baryon density.

At the high temperature and densities of nucleosynthesis, radiation is rapidly thermalized to a
perfect black body and the photon number density is a fixed function of the temperature n� / T 3

(see below). Apart from epochs in which energy from particle annihilation or other processes is
dumped into the radiation, the baryon-photon number density ratio remains constant.

Likewise nuclear statistical equilibrium, while satisfied, makes the abundance of the light elements
of mass number A follow the expectations of a Maxwell-Boltzmann distribution for the phase space
occupation number

fA = e�(mA�µA)/T e�p2
A/2mAT , (1)

where pA is the particle momentum, mA is the rest mass, and µA is the chemical potential. Namely
their number density

nA ⌘ gA

Z
d3pA

(2⇡)3
fA

= gA(
mAT

2⇡
)3/2e(µA�mA)/T . (2)

Here gA is the degeneracy factor. In equilibrium, the chemical potentials of the various elements are
related to those of the proton and neutron by

µA = Zµp + (A� Z)µn , (3)

Hu, White (2004)
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Figure 22.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis [14] − the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).
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Figure 21.1: This shows the preferred region in the Ωm–ΩΛ plane from the
compilation of supernovae data in Ref. 17, and also the complementary results
coming from some other observations. See full-color version on color pages at end of
book. [Courtesy of the Supernova Cosmology Project.]

Two major studies, the ‘Supernova Cosmology Project’ and the ‘High-z Supernova
Search Team’, found evidence for an accelerating Universe [16], interpreted as due to
a cosmological constant, or to a more general ‘dark energy’ component. Current results
from the Supernova Cosmology Project [17] are shown in Fig. 21.1 (see also Ref. 18).
The SNe Ia data alone can only constrain a combination of Ωm and ΩΛ. When combined
with the CMB data (which indicates flatness, i.e., Ωm + ΩΛ ≈ 1), the best-fit values are
Ωm ≈ 0.3 and ΩΛ ≈ 0.7. Future experiments will aim to set constraints on the cosmic
equation of state w(z). However, given the integral relation between the luminosity
distance and w(z), it is not straightforward to recover w(z) (e.g., Ref. 19).

July 14, 2006 10:37
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•23% of universe energy/matter is 
a new type of (non-baryonic) 
matter
•73% is a new type of energy 
(cosmological constant)
•SM is 4%



Coma Cluster

Evidence for Dark Matter

90% of the matter in the cluster doesn’t shine



Predicted

Evidence for Dark Matter

Something invisible is holding stars in orbit 

HW: predict the shape of this curve



2 26. Dark matter

All these arguments rely on Einsteinian, or Newtonian, gravity. One might thus ask
whether the necessity to postulate the existence of DM, sometimes perceived to be ad
hoc, could be avoided by modifying the theory of gravity. Indeed, the so–called Modified
Newtonian Dynamics (MOND) allows to reproduce many observations on galactic scales,
in particular galactic rotation curves, without introducing DM [4]. However, MOND is a
purely non–relativistic theory. Attempts to embed it into a relativistic field theory require
the existence of additional fields (e.g. a vector field or a second metric), and introduce
considerably arbitrariness [4]. Moreover, the correct description of large–scale structure
formation seems to require some sort of DM even in these theories [5]. In contrast,
successful models of particle DM (see below) can be described in the well established
language of quantum field theory, and do not need any modification of General Relativity,
which has passed a large number of tests with flying colors [6].

The currently most accurate, if somewhat indirect, determination of ΩDM comes from
global fits of cosmological parameters to a variety of observations; see the Section on
Cosmological Parameters for details. For example, using measurements of the anisotropy
of the cosmic microwave background (CMB) and of the spatial distribution of galaxies,
Ref. 7 finds a density of cold, non-baryonic matter

Ωnbmh2 = 0.1186 ± 0.0020 , (26.1)

where h is the Hubble constant in units of 100 km/(s·Mpc). Some part of the baryonic
matter density [7],

Ωbh2 = 0.02226 ± 0.00023 , (26.2)

may well contribute to (baryonic) DM, e.g., MACHOs [8] or cold molecular gas clouds [9].

The DM density in the “neighborhood” of our solar system is also of considerable
interest. This was first estimated as early as 1922 by J.H. Jeans, who analyzed the motion
of nearby stars transverse to the galactic plane [2]. He concluded that in our galactic
neighborhood, the average density of DM must be roughly equal to that of luminous
matter (stars, gas, dust). Remarkably enough, a recent estimate finds a quite similar
result for the smooth component of the local Dark Matter density [10]:

ρlocal
DM = (0.39 ± 0.03) · (1.2 ± 0.2) · (1 ± δtriax)

GeV

cm3
. (26.3)

The first term on the right-hand side of Eq. (26.3) gives the average Dark Matter
density at a point one solar distance from the center of our galaxy. The second factor
accounts for the fact that the baryons in the galactic disk, in which the solar system is
located, also increase the local DM density [11]. The third factor in Eq. (26.3) corrects
for possible deviations from a purely spherical halo; according to [12], δtriax ≤ 0.2.
Small substructures (minihaloes, streams) are not likely to change the local DM density
significantly [1]. Note that the first factor in Eq. (26.3) has been derived by fitting a
complete model of our galaxy to a host of data, including the galactic rotation curve. A
“purely local” analysis, only using the motion of nearby stars, gives a consistent result,
with an error three times as large [13].

October 1, 2016 19:59

Figure 2: Velocity distribution functions: the left panels are in the host halo’s restframe, the
right panels in the restframe of the Earth on June 2nd, the peak of the Earth’s velocity relative
to Galactic DM halo. The solid red line is the distribution for all particles in a 1 kpc wide shell
centered at 8.5 kpc, the light and dark green shaded regions denote the 68% scatter around the
median and the minimum and maximum values over the 100 sample spheres, and the dotted line
represents the best-fitting Maxwell-Boltzmann distribution.

are independent of location and persistent in time and hence reflect the detailed assembly
history of the host halo, rather than individual streams or subhalos. The extrema of the
sub-sample distributions, however, exhibit numerous distinctive narrow spikes at certain
velocities, and these are due to just such discrete structures. Note that although only
a small fraction of sample spheres exhibits such spikes, they are clearly present in some
spheres in all three simulations. The Galilean transform into the Earth’s rest frame washes
out most of the broad bumps, but the spikes remain visible, especially in the high veloc-
ity tails, where they can profoundly a�ect the scattering rates for inelastic and light DM
models (see Section 4).
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FIG. 3: Left: Observed rotation curve of dwarf galaxy DDO 154 (black data points) [144] compared to
models with an NFW profile (dotted blue) and cored profile (solid red). Stellar (gas) contributions indicated
by pink (dot-)dashed lines. Right: Corresponding DM density profiles adopted in the fits. NFW halo
parameters are rs ⇡ 3.4 kpc and ⇢s ⇡ 1.5 ⇥ 10

7
M�/kpc

3, while the cored density profile is generated
using an analytical SIDM halo model developed in [80, 82].

axisymmetric disk galaxies, circular velocity can be decomposed into three terms

Vcirc(r) =

q
Vhalo(r)2 + ⌥⇤Vstar(r)2 + Vgas(r)2 , (5)

representing the contributions to the rotation curve from the DM halo, stars, and gas, respectively.
The baryonic contributions to the rotation curve are modeled from the respective surface luminosi-
ties of stars and gas. However, the overall normalization between stellar mass and light remains
notoriously uncertain: stellar mass is dominated by smaller and dimmer stars, while luminosity is
dominated by larger and brighter stars. Estimates for the stellar mass-to-light ratio—denoted by
⌥⇤ in Eq. (5)—rely on stellar population synthesis models and assumptions for the initial mass
function, with uncertainties at the factor-of-two level [143]. Modulo this uncertainty, the DM pro-
file can be fit to observations. For a spherical halo, the DM contribution to the rotation curve is
Vhalo(r) =

p
GMhalo(r)/r, where G is Newton’s constant and Mhalo(r) is the DM mass enclosed

within r.
Fig. 3 illustrates these issues for dwarf galaxy DDO 154. The left panel shows the measured

HI rotation curve [144] compared to fits with cuspy (NFW) and cored profiles, which are shown
in the right panel. The NFW halo has been chosen to fit the asymptotic velocity at large radii and
match the median cosmological relation between ⇢s and rs [82]. However, this profile overpredicts
Vcirc in the inner region. This discrepancy is a symptom of too much mass for r . 2 kpc, while
the data favors a shallower cored profile with less enclosed mass. An NFW profile with alternative
parameters can provide an equally good fit as the cored profile, but the required concentration is
significantly smaller than preferred cosmologically [144].

Recent high-resolution surveys of nearby dwarf galaxies have given further weight to this dis-
crepancy. The HI Near Galaxy Survey (THINGS) presented rotation curves for seven nearby
dwarfs, finding a mean inner slope ↵ = �0.29 ± 0.07 [58], while a similar analysis by LITTLE
THINGS for 26 dwarfs found ↵ = �0.32 ± 0.24 [144]. These results stand in contrast to ↵ ⇠ �1

predicted for collisionless CDM.
However, this discrepancy may simply highlight the inadequacy of DM-only simulations to

infer the properties of real galaxies containing both DM and baryons. One proposal along these

12

[Tulin, Yu; 1705.02358]

we review these astrophysical observations and discuss possible solutions from baryonic physics

and other systematic effects. For other recent reviews of these issues, we direct the reader to

Refs. [112, 113, 114, 115].

The issues discussed here may share complementary solutions. For example, mechanisms that

generate cored density profiles may help reconcile the too-big-to-fail problem by reducing central

densities of MW subhalos, as well as accommodating the diversity of galactic rotation curves.

On the other hand, the too-big-to-fail problem may share a common resolution with the missing

satellites problem if the overall subhalo mass function is reduced.

A. Core-Cusp Problem
Collisionless CDM-only simulations predict “cuspy” DM density profiles for which the loga-

rithmic slope, defined by ↵
= d

l

n ⇢
dm/d

l

n r, tends to ↵ ⇠ �
1 at small radii [31, 32, 33, 36].

Such halos are well-described by the Navarro-Frenk-White (NFW) profile [32, 33],

⇢
NFW

(r
)

=

⇢
s(r/rs

)

(

1

+ r/rs
)

2 ,

(4)

where r is the radial coordinate and ⇢
s and rs are characteristic density and scale radius of the halo,

respectively. 5 On the other hand, as we discuss below, many observations do not find evidence for

the steep inner density slope predicted for collisionless CDM, preferring “cored” profiles with

inner slopes ↵ ⇠
0 that are systematically shallower [34, 35]. This discrepancy is known as the

“core-cusp problem.”

A related issue, known as the “mass deficit problem,” emerges when observed halos are viewed

within a cosmological context [38, 119, 120, 121]. The mass-concentration relation predicted

from cosmological CDM simulations implies a tight correlation between ⇢
s and rs (see, e.g.,

Refs. [122, 123, 124]). Since cosmological NFW halos are essentially a single-parameter profile

(up to scatter), determination of the halo at large radius fixes the halo at small radius. However,

many observed systems have less DM mass at small radii compared to these expectations. Alter-

natively, if NFW halos are fit to data at both large and small radii, the preferred profiles tend to be

less concentrated than expected cosmologically.

Rotation curves: Late-type dwarf and LSB galaxies are ideal laboratories for halo structure.

These systems are DM dominated down to small radii (or over all radii) and environmental dis-

turbances are minimized. Flores & Primack [34] and Moore [35] first recognized the core-cusp

issue based on HI rotation curves for several dwarfs, which, according to observations, are well

described by cored profiles [125, 126, 127]. 6

Indeed, rotation curve measurements for dwarfs and LSBs have been a long-standing challenge

to the
⇤CDM paradigm [119, 130, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142]. For

5 High resolution simulations have found that collisionless CDM profiles become shallower than
↵ ⇠ �

1 at small

radii [116, 117], in better agreement with the Einasto profile [118]. However, the enclosed mass profile is slightly

larger at small radii compared to NFW fits [116], further exacerbating the issues discussed here.

6 In these early studies, the Hernquist profile [128] was used to model collisionless CDM halos. It has the same

behavior as the NFW profile in the inner regions,
⇢dm /

r

�1, but falls as
r

�4 at large radii. On the other hand,

a variety of cored profiles have been adopted in the literature, including the nonsingular isothermal profile [129],

Burkert profile [130], and pseudo-isothermal profile
⇢dm

(

r

)

=

⇢0
(

1

+

r

2
/

r

2
c )

�1, where
⇢0 and

rc are the core

density and radius, respectively [131].
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per unit detector mass at a DM direct detection experiment is given by [22]

dR

dER
=

NT mN ρχ

2µ2
Nχ mχ

∫

vmin

d3v⃗
f(v⃗, v⃗E)

v
σN F 2(ER) , (2.1)

where mN ≈ AmP is the nucleus mass with mP the proton mass and A the atomic number;

F (ER) is the nuclear form factor and accounts for the fact that the cross section drops as

one moves away from zero momentum transfer; the two-parameter Fermi charge distribution

is used to calculate F (ER) throughout this paper [23]; NT is the number of target nuclei per

unit mass, given by NT = NA/A with Avogadro’s number, NA = 6.02 × 1026 kg−1; σN is the

cross section to scatter of a nucleus, and µNχ is the reduced mass of the DM-nucleus system.

The DM mass is mχ and we take the local DM density to be ρχ = 0.3 GeV/cm3. The velocity

of the dark matter onto the (Earth-borne) target is v⃗. The Earth’s velocity in the galactic

frame, v⃗E , is the sum of the Earth’s motion around the Sun [22] and the Sun’s motion in the

galaxy [24]. We assume the WIMP velocity distribution is Maxwell-Boltzmann with velocity

dispersion v0 = 220 km/s. Thus,

f(v⃗, v⃗E) =
1

(π v2
0)

3/2
e−(v⃗+v⃗E)2/v2

0 . (2.2)

As a function of time in the galactic frame, the Earth’s velocity is vE ≈ 227+14.4 cos [2π
(

t−t0
T

)

]

km/s, with T = 1 year and t0 is around June 2nd. The DM velocity distribution is cut-off

at the galactic escape velocity. Thus, the upper limit of the integration in (2.1) is given by

|⃗v + v⃗E| ≤ vesc, and the lower limit, since we will consider elastic scatters, is given by

vmin =

√

mNER

2µ2
Nχ

. (2.3)

The current allowed range for the galactic escape velocity [25] is 498 km/s ≤ vesc ≤ 608

km/s. For concreteness we set vesc = 500 km/s. Increasing this value slightly increases our

allowed parameter space, but the general features remain unchanged. Because of different

energy detection efficiencies for different detectors, a quench factor fq is introduced to relate

the observed recoil energy, ĒR, to the actual recoil energy ER, ER = ĒR/fq. This allows one

to convert Eq. (2.1) to the experimental differential spectrums as dR/dĒR = 1/fq dR/dER.

For example, we take the quench factor fq = 0.085 for the iodine element in the DAMA

experiment.

In the usual calculation the nuclear cross section σN is related to the nucleon scattering

cross section, σp, by,

σN =
(Zfp + (A − Z)fn)2

f2
p

µ2
Nχ

µ2
nχ

σp , (2.4)

where fp,n are the coupling strengths of DM to protons and neutrons and µnχ is the DM-

nucleon reduced mass. Here however, we wish to work explicitly with the nuclear scattering

cross section, and leave relating it to the microscopic Lagrangian to later, section 3. In

– 3 –

f(v) ∝ d3v e−(v/v0)2

v0 = 220 km s
−1

<0.2
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Fig. 15. Baryons and matter. Baryons change the relative heights of the even and odd peaks through their
inertia in the plasma. The matter-radiation ratio also changes the overall amplitude of the oscillations from
driving e↵ects. Adapted from Hu and Dodelson (2002).

second and third peaks (e.g. Hu et al. 2001). The dependence of the spectrum on the baryon density
⌦mh2 is shown in Fig. 15. Constraints on the third peak from the DASI experiment (Pryke et al.
2001) represented the first direct evidence for dark matter at the epoch of recombination. Current
constraints from a combination of WMAP and higher resolution ground and balloon based data yield
⌦mh2 = 0.135 ± 0.007 (Reichardt et al. (2008)). Since this parameter controls the error on the
distance to recombination through equation (131) and the matter power spectrum (see below), it is
important to improve the precision of its measurement with the third higher peaks.

Damping Tail: Consistency— Under the standard thermal history of §2 and matter content, the
parameters that control the first 3 peaks also determine the structure of the damping tail at ` > 103:
namely, the angular diameter distance to recombination D⇤, the baryon density ⌦bh

2 and the matter
density ⌦mh2. When the damping tail was first discovered by the CBI experiment (Padin et al. 2001),
it supplied compelling support for the standard theoretical modeling of the physics at recombination
outlined here. Currently the best constraints on the damping tail are from the ACBAR experiment
(Reichardt et al. 2008, see Fig. 7). Consistency between the low order peaks and the damping tail
can be used to make precision tests of recombination and any physics beyond the standard model at
that epoch. For example, damping tail measurements can be used to constrain the evolution of the
fine structure constant.

Matter Power Spectrum: Shape & Amplitude — The acoustic peaks also determine the shape and
amplitude of the matter power spectrum. Firstly, acoustic oscillations are shared by the baryons. In
particular, the plasma motion kinematically produces enhancements of density near recombination
(see Eqn. 113))

�b ⇡ �k⌘⇤vb(⌘⇤) ⇡ �k⌘⇤v�(⌘⇤) . (132)

This enhancement then imprints into the matter power spectrum at an amplitude reduced by ⇢b/⇢m

due to the small baryon fraction (Hu and Sugiyama 1996). Secondly, the gravitational potentials
that the cold dark matter perturbations fall in are evolving through the plasma epoch due to the

Hu 0802.3688

• CMB well described by ~10 parameters
• Linear modes, caused by gravitational instabilities of 
coupled baryon-photon fluid, seeded by 10-5 fluctuations

• Adiabatic, gaussian
• Requires on DM, baryons and dark energy
• Polarization, higher   , black body spectrum, BAO,…`



Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light 
element abundance

24. Big-Bang nucleosynthesis 3

Figure 24.1: The primordial abundances of 4He, D, 3He, and 7Li as predicted by
the standard model of Big-Bang nucleosynthesis—the bands show the 95% CL range
[5]. Boxes indicate the observed light element abundances. The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).
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Figure 24.1: The primordial abundances of 4He, D, 3He, and 7Li as predicted by
the standard model of Big-Bang nucleosynthesis—the bands show the 95% CL range
[5]. Boxes indicate the observed light element abundances. The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).
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Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light 
element abundance ~5% in baryons

24. Big-Bang nucleosynthesis 3

Figure 24.1: The primordial abundances of 4He, D, 3He, and 7Li as predicted by
the standard model of Big-Bang nucleosynthesis—the bands show the 95% CL range
[5]. Boxes indicate the observed light element abundances. The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).
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• Freeze out occurs when weak interactions decouple

• Neutron:Proton ratio determined by thermodynamics

• Reaction rates determined by single parameter

• BBN begins when temp. far enough below Deuterium b.e. 

• At L.O. all nuclei are H or He

G2
FT

5 ⇠ H ⇠ T 2

Mpl
T ⇠ 1MeV

n

p
⇠ e��m/T ⇠ 1/6

⌘b =
nb

n�
⇠ 6⇥ 10�10

⌘�1e��D/T ⇠ 1

2 24. Big-Bang nucleosynthesis

production of deuterium (and other complex nuclei) until well after T drops below
the binding energy of deuterium, ∆D = 2.23 MeV. The quantity η−1e−∆D/T , i.e., the
number of photons per baryon above the deuterium photo-dissociation threshold, falls
below unity at T ≃ 0.1 MeV; nuclei can then begin to form without being immediately
photo-dissociated again. Only 2-body reactions, such as D(p, γ)3He, 3He(D, p)4He, are
important because the density by this time has become rather low – comparable to that
of air!

Nearly all neutrons end up bound in the most stable light element 4He. Heavier nuclei
do not form in any significant quantity both because of the absence of stable nuclei with
mass number 5 or 8 (which impedes nucleosynthesis via n4He, p4He or 4He4He reactions),
and the large Coulomb barriers for reactions such as 3He(4He, γ)7Li and 3He(4He, γ)7Be.
Hence the primordial mass fraction of 4He, Yp ≡ ρ(4He)/ρb, can be estimated by the
simple counting argument

Yp =
2(n/p)

1 + n/p
≃ 0.25 . (24.1)

There is little sensitivity here to the actual nuclear reaction rates, which are, however,
important in determining the other ‘left-over’ abundances: D and 3He at the level of a
few times 10−5 by number relative to H, and 7Li/H at the level of about 10−10 (when η10

is in the range 1–10). These values can be understood in terms of approximate analytic
arguments [12,13]. The experimental parameter most important in determining Yp is
the neutron lifetime, τn, which normalizes (the inverse of) Γn↔p. Its value has recently
been significantly revised downwards to τn = 880.3 ± 1.1 s (see N Baryons Listing).

The elemental abundances shown in Fig. 24.1 as a function of η10 were calculated [14]
using an updated version [15] of the Wagoner code [1]; other versions [16–18] are publicly
available. The 4He curve includes small corrections due to radiative processes at zero and
finite temperatures [19], non-equilibrium neutrino heating during e± annihilation [20],
and finite nucleon mass effects [21]; the range reflects primarily the 2σ uncertainty
in the neutron lifetime. The spread in the curves for D, 3He, and 7Li corresponds to
the 2σ uncertainties in nuclear cross sections, as estimated by Monte Carlo methods
[15,22–24]. The input nuclear data have been carefully reassessed [14, 24–28], leading to
improved precision in the abundance predictions. In particular, the uncertainty in 7Li/H
at interesting values of η has been reduced recently by a factor ∼ 2, a consequence of a
similar reduction in the error budget [29] for the dominant mass-7 production channel
3He(4He, γ)7Be. Polynomial fits to the predicted abundances and the error correlation
matrix have been given [23,30]. The boxes in Fig. 24.1 show the observationally inferred
primordial abundances with their associated uncertainties, as discussed below.

The nuclear reaction cross sections important for BBN have all been measured at
the relevant energies. We will see, however, that recently there have been substantial
advances in the precision of light element observations (e.g., D/H) and in cosmological
parameters (e.g., from Planck). This motivates corresponding improvement in BBN
precision and thus in the key reaction cross sections. For example, it has been suggested
[31] that d(p, γ)3He measurements may suffer from systematic errors and be inferior to ab
initio theory; if so, this could alter D/H abundances at a level that is now significant.

October 18, 2016 13:34

n

p
=

1

6
⌧n�! 1

7

BBN@LO



Evidence for Dark Matter

The Bullet Cluster



Evidence for Dark Matter

The Bullet Cluster

Mass distribution 
(gravitational lensing)



Evidence for Dark Matter

The Bullet Cluster

X-rays (hot gas)

Mass distribution 
(gravitational lensing)



Evidence for Dark Matter



Evidence for Dark Matter



Recap on DM’s (gross) properties

•DM makes up 23% of the universe
•Gravitates like ordinary matter, but is non-baryonic 
•Is dark i.e. neutral under SM (not coloured, or charged)
•Does not interact much with itself
•Does not couple to massless particle
•Was non-relativistic at time of CMB
•Is long lived  
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TABLE I: A lower limit on the lifetime of a dark matter
particle with mass in the range 100 GeV . mDM . 10 TeV,
decaying to the products listed in the left column. The ex-
periment and the observed particle being used to set the limit
are listed in the right column. All the limits are only approx-
imate. Generally conservative assumptions were made and
there are many details and caveats as described in [1].

THEORETICAL SETUP

To study the observational consequences of decay-
ing dark matter in SUSY GUTs one may follow an ef-
fective field theory approach and consider an extended
MSSM with higher dimensional operators parametriz-
ing GUT e↵ects and leading to dark matter decay. A
detailed analysis of possible higher dimensional opera-
tors and the ways to generate them from concrete mi-
croscopic SUSY GUTs was presented in [1]. Here, for
definiteness, we will work in the context of the SO(10)
models described in [1]. As an example, in addition to
the standard MSSM interactions, we introduce an addi-
tional vectorlike (16m, 1̄6m) multiplet at the TeV scale
and 10GUT multiplet at the GUT scale. The relevant
superpotential interactions involving these fields are

W 0 = �16m16f10GUT +m16m1̄6m +MGUT10GUT10GUT

(2)
We will assume that the singlet Sm is the lightest compo-
nent of the 16m and will therefore be dark matter. After
GUT scale matter and gauge fields are integrated out
one obtains the dimension 5 operator 16m16m16f16f in
the superpotential and dimension 5 and 6 Kahler terms
16m16m10†, 16†m16m16†f16f involving m-fields. Of all
these, the only operator that involves two singlet Sm

components of 16m is the dimension 6 Kahler term yield-
ing S†

mSm16†f16f (assuming right-handed neutrinos are
heavy). Consequently, in this model a thermal relic
abundance of singlet fields is produced through dimen-
sion 5 decays of the charged components of 16m close to
the BBN epoch. These decays are interesting in their
own right, as they may explain the observed Lithium
abundances [3]. On the other hand, dimension 6 decays
between di↵erent components of the singlet supermulti-

plet may lead to observable astrophysical signals that we
discuss in the rest of the paper.

Note that these decays may go through operators
generated by integrating out the heavy U(1)B�L gauge
boson, or by integrating out heavy 10GUT fields. In the
former case decays are flavor universal, while the latter
generically lead to flavor non-universal decays. In the
case of flavor non-universal decays, since the decay rate
scales as the fourth power of the coupling, it is easy to
have decays to one flavor dominate over the rest. De-
pending on the relative strength of gauge and superpo-
tential couplings and the masses of the heavy fields, both
possibilities can be realized.

One may worry that this picture could be spoiled by
lower dimension operators, such as Kahler kinetic mix-
ings 10†GUT10h and 16†m16f . However, these are forbid-
den by R-parity (under which 16m is even, and 10GUT

is odd), and m-parity under which both 16m and 10GUT

are odd.
For simplicity, in this paper we will focus on the case

in which the scalar s̃ receives a TeV scale vev. In this
case dimension 6 operators lead to two body decays of
the singlet fields to the MSSM fields. We are thus lead
to two interesting observations:

• In this case dark matter decay products necessar-
ily contain MSSM superpartners, because direct
decays of a scalar into two light fermions are sup-
pressed by helicity.

• The production of superpartners, combined with
the generic expectation that sleptons are lighter
than squarks leads to decays dominantly into lep-
tonic channels due to kinematics.

These lead to a possible connection between the branch-
ing fraction of dark matter and the spectrum of its de-
cay products on the one hand, and the supersymmetric
spectrum and the decay cascades of superpartners on the
other.

ASTROPHYSICAL SIGNALS

Electrons and Positrons

GUT induced dark matter decays lead to several
generic expectations for electron/positron spectra. As
discussed in the previous section, the dark matter is a
combination of the scalar (s̃) and fermion (s) compo-
nents of the Sm superfield. The two body decay of dark
matter will involve sleptons (l̃, the superpartner of a lep-
ton) in the final state. The slepton then further decays
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TABLE I: A lower limit on the lifetime of a dark matter
particle with mass in the range 100 GeV . mDM . 10 TeV,
decaying to the products listed in the left column. The ex-
periment and the observed particle being used to set the limit
are listed in the right column. All the limits are only approx-
imate. Generally conservative assumptions were made and
there are many details and caveats as described in [1].

THEORETICAL SETUP

To study the observational consequences of decay-
ing dark matter in SUSY GUTs one may follow an ef-
fective field theory approach and consider an extended
MSSM with higher dimensional operators parametriz-
ing GUT e↵ects and leading to dark matter decay. A
detailed analysis of possible higher dimensional opera-
tors and the ways to generate them from concrete mi-
croscopic SUSY GUTs was presented in [1]. Here, for
definiteness, we will work in the context of the SO(10)
models described in [1]. As an example, in addition to
the standard MSSM interactions, we introduce an addi-
tional vectorlike (16m, 1̄6m) multiplet at the TeV scale
and 10GUT multiplet at the GUT scale. The relevant
superpotential interactions involving these fields are

W 0 = �16m16f10GUT +m16m1̄6m +MGUT10GUT10GUT

(2)
We will assume that the singlet Sm is the lightest compo-
nent of the 16m and will therefore be dark matter. After
GUT scale matter and gauge fields are integrated out
one obtains the dimension 5 operator 16m16m16f16f in
the superpotential and dimension 5 and 6 Kahler terms
16m16m10†, 16†m16m16†f16f involving m-fields. Of all
these, the only operator that involves two singlet Sm

components of 16m is the dimension 6 Kahler term yield-
ing S†

mSm16†f16f (assuming right-handed neutrinos are
heavy). Consequently, in this model a thermal relic
abundance of singlet fields is produced through dimen-
sion 5 decays of the charged components of 16m close to
the BBN epoch. These decays are interesting in their
own right, as they may explain the observed Lithium
abundances [3]. On the other hand, dimension 6 decays
between di↵erent components of the singlet supermulti-

plet may lead to observable astrophysical signals that we
discuss in the rest of the paper.

Note that these decays may go through operators
generated by integrating out the heavy U(1)B�L gauge
boson, or by integrating out heavy 10GUT fields. In the
former case decays are flavor universal, while the latter
generically lead to flavor non-universal decays. In the
case of flavor non-universal decays, since the decay rate
scales as the fourth power of the coupling, it is easy to
have decays to one flavor dominate over the rest. De-
pending on the relative strength of gauge and superpo-
tential couplings and the masses of the heavy fields, both
possibilities can be realized.

One may worry that this picture could be spoiled by
lower dimension operators, such as Kahler kinetic mix-
ings 10†GUT10h and 16†m16f . However, these are forbid-
den by R-parity (under which 16m is even, and 10GUT

is odd), and m-parity under which both 16m and 10GUT

are odd.
For simplicity, in this paper we will focus on the case

in which the scalar s̃ receives a TeV scale vev. In this
case dimension 6 operators lead to two body decays of
the singlet fields to the MSSM fields. We are thus lead
to two interesting observations:

• In this case dark matter decay products necessar-
ily contain MSSM superpartners, because direct
decays of a scalar into two light fermions are sup-
pressed by helicity.

• The production of superpartners, combined with
the generic expectation that sleptons are lighter
than squarks leads to decays dominantly into lep-
tonic channels due to kinematics.

These lead to a possible connection between the branch-
ing fraction of dark matter and the spectrum of its de-
cay products on the one hand, and the supersymmetric
spectrum and the decay cascades of superpartners on the
other.

ASTROPHYSICAL SIGNALS

Electrons and Positrons

GUT induced dark matter decays lead to several
generic expectations for electron/positron spectra. As
discussed in the previous section, the dark matter is a
combination of the scalar (s̃) and fermion (s) compo-
nents of the Sm superfield. The two body decay of dark
matter will involve sleptons (l̃, the superpartner of a lep-
ton) in the final state. The slepton then further decays



So far all probes have been 
gravitational in nature

Advance in Perihelion of Mercury needed new physics 
(general relativity) to explain it. (Originally thought to be 
planet Vulcan!)

Curious

Neptune discovered by wobble in orbit of Uranus
—original DM!

What about other interactions?
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Relic abundance
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If there are DM-SM couplings leading to annihilation/
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DM as a thermal relic “The weak shall inherit the Universe”

If there are DM-SM couplings leading to annihilation/
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FIG. 14: In superWIMP scenarios, a WIMP freezes out as usual, but then decays to a superWIMP,
a superweakly-interacting particle that forms dark matter.

IV. SUPERWIMPS

In superWIMP scenarios [32, 33], a WIMP freezes out as usual, but then decays to a
stable dark matter particle that interacts superweakly, as shown in Fig. 14. The prototypical
example of a superWIMP is a weak-scale gravitino produced non-thermally in the late
decays of a weakly-interacting next-to-lightest supersymmetric particle (NLSP), such as a
neutralino, charged slepton, or sneutrino [32, 33, 56, 57, 58, 59, 60, 61]. Additional examples
include axinos [23, 62] and quintessinos [63] in supersymmetry, Kaluza-Klein graviton and
axion states in models with universal extra dimensions [64], and stable particles in models
that simultaneously address the problem of baryon asymmetry [65]. SuperWIMPs have
all of the virtues of WIMPs. They exist in the same well-motivated frameworks and are
stable for the same reasons. In addition, in many cases the WIMP and superWIMP masses
have the same origin. In these cases, the decaying WIMP and superWIMP naturally have
comparable masses, and superWIMPs also are automatically produced with relic densities
of the desired order of magnitude.

As noted above, superWIMPs exist in many different contexts. We concentrate here on
the case of gravitino superWIMPs. In the simplest supersymmetric models, supersymme-
try is transmitted to standard model superpartners through gravitational interactions, and
supersymmetry is broken at a high scale. The mass of the gravitino G̃ is

mG̃ =
F√
3M∗

, (11)
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HW: Repeat this for baryons. Why does 
there need to be an initial asymmetry?
HW: Repeat for a state coupled to the Z.  
(The Lee-Weinberg bound)



WIMP
• DM interacts through weak (or weak scale) couplings
• Lee-Weinberg and Unitarity constrain mass range 

• ~1 GeV —~10 TeV
• Usually consider a thermal relic
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Figure 3 | Upper limits on the spin-dependentWIMP–neutron scattering
cross-section set by di�erent xenon-based experiments. Limit curves from
LUX62 and PandaX-II63.
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Figure 4 | The projected sensitivity (dashed curves) on the
spin-independentWIMP–nucleon cross-sections of a selected number of
upcoming and planned direct detection experiments, including
XENON1T34, PandaX-4T, XENONnT34, LZ35, DARWIN36 or PandaX-30T,
and SuperCDMS56. Currently leading limits in Fig. 1 (see legend), the
neutrino ‘floor’20, and the post-LHC-Run1 minimal-SUSY allowed
contours21 are overlaid in solid curves for comparison. The di�erent
crossings of the experimental sensitivities and the neutrino floor at around
a few GeV/c2 are primarily due to di�erent threshold assumptions.

cross checks from indirect and collider searches (for example, see
SUSY contours from Figs 1 and 4). This calls strongly for a world-
wide multi-faceted programme for dark matter detection. Finally,
one cannot ignore the importance of those null searches which
have been setting tighter constraints to many theoretical models,

and which may eventually direct us on a completely di�erent path
towards understanding this mysterious component of our Universe.
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Figure 4 | The projected sensitivity (dashed curves) on the
spin-independentWIMP–nucleon cross-sections of a selected number of
upcoming and planned direct detection experiments, including
XENON1T34, PandaX-4T, XENONnT34, LZ35, DARWIN36 or PandaX-30T,
and SuperCDMS56. Currently leading limits in Fig. 1 (see legend), the
neutrino ‘floor’20, and the post-LHC-Run1 minimal-SUSY allowed
contours21 are overlaid in solid curves for comparison. The di�erent
crossings of the experimental sensitivities and the neutrino floor at around
a few GeV/c2 are primarily due to di�erent threshold assumptions.

cross checks from indirect and collider searches (for example, see
SUSY contours from Figs 1 and 4). This calls strongly for a world-
wide multi-faceted programme for dark matter detection. Finally,
one cannot ignore the importance of those null searches which
have been setting tighter constraints to many theoretical models,

and which may eventually direct us on a completely di�erent path
towards understanding this mysterious component of our Universe.
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Hidden sector DM—interesting dynamics

Hidden sector dynamics, new force carriers

Composite dark matter, cannibalisation, DM form factors, 
inelastic splittings, dipole couplings, atomic DM, DM-DM self 
interactions,…

2

II. THE MODEL

In addition to the WIMP state � which is a Dirac
fermion, we consider a messenger state, a Dirac fermion
 and a charged scalar ', both of which are SUW(2)
doublets with hypercharge Y = 1/2 and are heavier than
the WIMP. They couple to the WIMP state through a
Yukawa coupling which we denote by �. The Lagrangian
for this model is given by

L = �̄

�

i

/

@ � m�

�

�� 1

2

�m �C�+  ̄

�

i

/

D � M

f

�

 

+ (Dµ

')† D
µ

'� M

2

s

'

†
'+ � ̄�'+ h.c. (3)

where D
µ

= @

µ

�igW

a

µ

⌧

a�i

1

2

g

0
B

µ

is the covariant deriva-
tive associated with the SUW(2) ⇥ U

Y

(1) gauge-bosons,
W

a

µ

and B

µ

, respectively, and ⌧

a are the SUW(2) gener-

ators obeying tr
�

⌧

a

⌧

b

�

= 1

2

�

ab and related to the Pauli
matrices through ⌧

a = 1

2

�

a. Aside from its Dirac mass,
m� , the WIMP states are split by a Majorana mass �m.

When the mass of the WIMP is much lower than that
of the messengers, its interactions with light fields such as
the photon and weak vector-bosons can be described by
an e↵ective Lagrangian. Gauge invariance forces these in-
teractions to appear as dimension 5, magnetic dipole op-
erator as well as dimension 7, Rayleigh operators2. Since
the model above is a renormalizable interacting theory
these operators can be computed in perturbation the-
ory. However, because we will be dealing with scenarios
where the new states are not much heavier than the dark
matter, it is important to include m�/Mf

corrections to
these new operators (i.e., the form factors). In this let-
ter we include all m�/Mf

e↵ects at 1-loop order when
computing the non-relativistic cross-sections relevant for
phenomenology.

We begin with the interactions of the WIMP with a
single gauge-boson. These are generated through the di-
agram shown in Fig. 1. Gauge-invariance forbids any
coupling to the non-abelian SUW(2) fields and the most
general vertex coupling to hypercharge consistent with
Lorentz invariance can be written as,

�µ(q2) = �

µ

F

1

(q2) + i

⇣

µ

�

2

⌘

�

µ⌫

q

⌫

F

2

(q2) (4)

where the form-factors F

1

(q2) and F

2

(q2) are given ex-
plicitly in the appendix3. The second part of this vertex
corresponds to an e↵ective dipole operator for the WIMP
�

µ�

2

�

�̄�

µ⌫

B

µ⌫

� with the dipole strength being

µ

�

=
�

2

g

0

32⇡2

M

f

(5)

2 After EWSB other, lower dimensional operators may appear in-
volving the Higgs field, however those appear at higher loop order
and are correspondingly much further suppressed.

3 The F1(q2) form-factor need not vanish as it is related to non-
renormalizable terms of the form �̄�µ@⌫�Bµ⌫ . Gauge-invariance
only imposes the condition that F1(q2) should approach zero as
q2 ! 0.

p1

p2

q, µ

p1

p2

q, µ

FIG. 1. Magnetic dipole operator generated at 1-loop.

(a)

(c) (d)

(b)

FIG. 2. The loop diagrams generating the RayDM operators
at lowest order in perturbation theory. Diagrams (a), (b), and
(c) represent two separate contributions where the external
gauge-bosons are interchanged.

where g

0 is the hypercharge coupling constant, q2 is the
momentum carried by the gauge-boson. More explicitly,
the coe�cient of the dipole operator is multiplied by the
hypercharge and by the size of the SUW(2) representa-
tion of the messengers in the loop, which in our case gives
a factor of unity. Similar comments apply to the coe�-
cient of F

1

(q2). To lowest order in an expansion in the
messenger mass these form-factors are

F
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(q2) = �µ

�
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where r = M

f

/M

s

. We include the e↵ects of both F

1

and F

2

to all order in the messenger mass expansion in
the cross-sections discussed below.

The Rayleigh operators are generated by attaching
another external gauge-boson to the loop diagrams, as
shown in Fig. 2. In this case coupling to non-abelian
gauge-bosons is possible as well. The Rayleigh scales as-
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We present a new paradigm for achieving thermal relic dark matter. The mechanism arises when
a nearly secluded dark sector is thermalized with the Standard Model after reheating. The freezeout
process is a number-changing 3 ! 2 annihilation of strongly-interacting-massive-particles (SIMPs)
in the dark sector, and points to sub-GeV dark matter. The couplings to the visible sector, necessary
for maintaining thermal equilibrium with the Standard Model, imply measurable signals that will
allow coverage of a significant part of the parameter space with future indirect- and direct-detection
experiments and via direct production of dark matter at colliders. Moreover, 3 ! 2 annihilations
typically predict sizable 2 ! 2 self-interactions which naturally address the ‘core vs. cusp’ and
‘too-big-to-fail’ small structure problems.

INTRODUCTION

Dark matter (DM) makes up the majority of the mass
in the Universe, however, its identity is unknown. The
few properties known about DM are that it is cold and
massive, it is not electrically charged, it is not colored and
it is not very strongly self-interacting. One possibility for
the identity of DM is that it is a thermal relic from the
early Universe. Cold thermal relics are predicted to have
a mass

m
DM

⇠ ↵
ann

(T
eq

M
Pl

)1/2 ⇠ TeV , (1)

where ↵
ann

is the e↵ective coupling constant of the 2 ! 2
DM annihilation cross section, taken to be of order weak
processes ↵

ann

' 1/30 above, T
eq

is the matter-radiation
equality temperature and M

Pl

is the reduced Planck
mass. The emergence of the weak scale from a geomet-
ric mean of two unrelated scales, frequently called the
WIMP miracle, provides an alternate motivation beyond
the hierarchy problem for TeV-scale new physics.

In this work we show that there is another mechanism
that can produce thermal relic DM even if ↵

ann

' 0. In
this limit, while thermal DM cannot freeze out through
the standard 2 ! 2 annihilation, it may do so via a 3 ! 2
process, where three DM particles collide and produce
two DM particles. The mass scale that is indicated by
this mechanism is given by a generalized geometric mean,

m
DM

⇠ ↵
e↵

�
T 2

eq

M
Pl

�
1/3 ⇠ 100 MeV , (2)

where ↵
e↵

is the e↵ective strength of the self-interaction
of the DM which we take as ↵

e↵

' 1 in the above. As
we will see, the 3 ! 2 mechanism points to strongly self-
interacting DM at or below the GeV scale. In similar
fashion, a 4 ! 2 annihilation mechanism, relevant if DM
is charged under a Z

2

symmetry, leads to DM in the keV

↵
e↵

' 1 ↵
e↵

' 1

DM
3→2 2→2 

✏ � 1

Kin. Eq.

FIG. 1: A schematic description of the SIMP paradigm. The
dark sector consists of DM which annihilates via a 3 ! 2 pro-
cess. Small couplings to the visible sector allow for thermal-
ization of the two sectors, thereby allowing heat to flow from
the dark sector to the visible one. DM self interactions are
naturally predicted to explain small scale structure anomalies
while the couplings to the visible sector predict measurable
consequences.

to MeV mass range. In this case, however, a more com-
plicated production mechanism, such as freeze-out and
decay, is typically needed to evade cosmological bounds.

If the dark sector does not have su�cient couplings
to the visible sector for it to remain in thermal equilib-
rium, the 3 ! 2 annihilations heat up the DM, signif-
icantly altering structure formation [1, 2]. In contrast,
a crucial aspect of the mechanism described here is that
the dark sector is in thermal equilibrium with the Stan-
dard Model (SM), i.e. the DM has a phase-space dis-
tribution given by the temperature of the photon bath.
Thus, the scattering with the SM bath enables the DM to
cool o↵ as heat is being pumped in from the 3 ! 2 pro-
cess. Consequently, the 3 ! 2 thermal freeze-out mech-
anism generically requires measurable couplings between
the DM and visible sectors. A schematic description of
the SIMP paradigm is presented in Fig. 1.

The phenomenological consequences of this paradigm
are two-fold. First, the significant DM self-interactions
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F. Summary of ongoing and proposed experiments

The experimental community for dedicated dark sector searches has grown substantially
in the last eight years and as the list above illustrates, the experiments, whether ongoing or
proposed, have expanded to cover a wide range of production modes and detection strate-
gies. Experiments like APEX, A1, HPS, and DarkLight, that take advantage of explicit
final state reconstruction, push deep into the "2 parameter range, with sensitivity in m

A

0

up to a few hundred MeV. In the coming years, experiments like VEPP3, PADME, and
MMAPS will address a more limited parameter range, but as missing mass experiments,
eliminating aspects of model dependence by being fully agnostic as to the final state. Col-
lider experiments allow probes to much higher masses than can be reached in fixed-target
experiments. Some, like Belle-II and LHCb, will have trigger schemes specifically optimized
for dark sector searches. Taken together, the set of existing and planned experiments form
a suite of balanced and complementary approaches, well-suited to the search for new phe-
nomena whose physical characteristics and potential manifestations cannot be predicted in
detail ahead of time.
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which the thermal target is largely an invariant under varia-
tion of couplings and of mass hierarchies.

A. Mediator Model Building

Unlike weak-scale WIMPs, which realize successful
freeze-out with only SM gauge interactions, sub-GeV DM is
overproduced in the absence of light (⌧ m

Z

) new mediators
to generate a sufficiently large annihilation rate [29, 30]. To
avoid detection thus far, such mediators must be neutral under
the SM and couple non-negligibly to visible particles.

If SM particles are neutral under the new interaction, a

renormalizable model (without additional fields) requires the
mediator to interact with the SM through the hypercharge,
Higgs, or lepton portals

B
µ⌫

, H†H , LH, (1)

for vector, scalar, and fermionic mediators, respectively.
However, coupling a fermionic mediator to the lepton por-
tal requires additional model building4 and scalar mediators,
which mix with the Higgs are ruled out for predictive mod-
els in which DM annihilates directly to SM final states (see

4 A fermionic mediator coupled to the lepton portal requires additional
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missing momentum experiment [2, 23] in which a (⇠ few GeV) beam electron produces DM in a thin target (⌧ radiation length) and thereby
loses a large fraction of its incident energy. The emerging lower energy electron passes through tracker material and registers as a signal event
if there is no additional energy deposited in the ECAL/HCAL system downstream, which serves primarily to veto SM activity. Right: Setup
for an NA64 style experiment in which the beam (typically at higher energies, ⇠ 30 GeV) produces the DM system by interacting with an
instrumented, active target volume [24]. As with LDMX, the instrumented region serves to verify that the beam electron has abruptly lost most
of its energy and that there is no additional SM activity downstream.

which the thermal target is largely an invariant under varia-
tion of couplings and of mass hierarchies.

A. Mediator Model Building

Unlike weak-scale WIMPs, which realize successful
freeze-out with only SM gauge interactions, sub-GeV DM is
overproduced in the absence of light (⌧ m

Z

) new mediators
to generate a sufficiently large annihilation rate [29, 30]. To
avoid detection thus far, such mediators must be neutral under
the SM and couple non-negligibly to visible particles.

If SM particles are neutral under the new interaction, a

renormalizable model (without additional fields) requires the
mediator to interact with the SM through the hypercharge,
Higgs, or lepton portals

B
µ⌫

, H†H , LH, (1)

for vector, scalar, and fermionic mediators, respectively.
However, coupling a fermionic mediator to the lepton por-
tal requires additional model building4 and scalar mediators,
which mix with the Higgs are ruled out for predictive mod-
els in which DM annihilates directly to SM final states (see

4 A fermionic mediator coupled to the lepton portal requires additional
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Figure 2: WIMP annihilation for: (A) mψ < mV on the left; and (B) mψ > mV on the right – the secluded
regime in which the annihilation may proceed via two metastable on-shell V ’s, which ultimately decay to
SM states.

energy scale for the problem, in this limit one may substitute ∂µBµν by the total hypercharge
current and neglect the influence of SM threshold effects. For small mixing, characterized
by β ≪ 1 where

β ≡

(

κe′

e cos θW

)2

, (4)

the resulting annihilation cross section for nonrelativistic WIMPs takes the following form,

⟨σannv⟩mψ≫mSM
≈ 1.3 pbn × β

(

500 GeV

mψ

)2

×

(

4m2
ψ

4m2
ψ − m2

V

)2

, (5)

proceeding in the l = 0 channel with an obvious pole at mψ = mV /2, in the vicinity of
which a more accurate treatment of the thermal average is required. The result depends
on the mixing parameter β and the sum of squares of the hypercharges for the SM fields,
∑

fermions Y 2
f + 1

2

∑

bosons Y 2
b = 10 + 0.25. Note that in the opposite limit, mb ≪ mψ ≪ mZ ,

the total cross section is instead proportional to the sum of squares of all the electric charges
of SM fermions with the exception of the t-quark.

This cross-section needs to be compared with the constraint on the dark matter energy
density provided by recent cosmological observations:

2 ×
109(mψ/Tf)

√

g∗(Tf ) × GeV × MPl⟨σv⟩
≤ ΩDMh2 ≃ 0.1, (6)

where Tf is the freeze-out temperature (it suffices here to take mψ/Tf ≃ 20), g∗ the effective
number of degrees of freedom at freeze-out, and the extra factor of two relative to the
standard formula (see e.g. [16]) is because annihilation can occur only between particles and
anti-particles.

In Fig. 3, we exhibit the abundance constraint on the β − mψ plane for a specific choice
of mediator mass, mV = 400 GeV, by saturating the inequality (6). This value of mV

lies outside the direct reach of LEP or the Tevatron but is certainly within range for the
LHC. One can clearly see the enhancement of the annihilation cross section in the vicinity
of the two vector resonance poles, Z and V , where the mixing parameter β is allowed to be
significantly smaller than 1.

This model is subject to various constraints from direct searches and collider physics.
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FIG. 14: In superWIMP scenarios, a WIMP freezes out as usual, but then decays to a superWIMP,
a superweakly-interacting particle that forms dark matter.

IV. SUPERWIMPS

In superWIMP scenarios [32, 33], a WIMP freezes out as usual, but then decays to a
stable dark matter particle that interacts superweakly, as shown in Fig. 14. The prototypical
example of a superWIMP is a weak-scale gravitino produced non-thermally in the late
decays of a weakly-interacting next-to-lightest supersymmetric particle (NLSP), such as a
neutralino, charged slepton, or sneutrino [32, 33, 56, 57, 58, 59, 60, 61]. Additional examples
include axinos [23, 62] and quintessinos [63] in supersymmetry, Kaluza-Klein graviton and
axion states in models with universal extra dimensions [64], and stable particles in models
that simultaneously address the problem of baryon asymmetry [65]. SuperWIMPs have
all of the virtues of WIMPs. They exist in the same well-motivated frameworks and are
stable for the same reasons. In addition, in many cases the WIMP and superWIMP masses
have the same origin. In these cases, the decaying WIMP and superWIMP naturally have
comparable masses, and superWIMPs also are automatically produced with relic densities
of the desired order of magnitude.

As noted above, superWIMPs exist in many different contexts. We concentrate here on
the case of gravitino superWIMPs. In the simplest supersymmetric models, supersymme-
try is transmitted to standard model superpartners through gravitational interactions, and
supersymmetry is broken at a high scale. The mass of the gravitino G̃ is

mG̃ =
F√
3M∗

, (11)

16
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that simultaneously address the problem of baryon asymmetry [65]. SuperWIMPs have
all of the virtues of WIMPs. They exist in the same well-motivated frameworks and are
stable for the same reasons. In addition, in many cases the WIMP and superWIMP masses
have the same origin. In these cases, the decaying WIMP and superWIMP naturally have
comparable masses, and superWIMPs also are automatically produced with relic densities
of the desired order of magnitude.

As noted above, superWIMPs exist in many different contexts. We concentrate here on
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Non-thermal relics

• Late decaying massive particle e.g. modulus
• Asymmetric DM

• Similar to baryon-antibaryon asymmetry
• Explains 
• Decouples cosmological history from possible signals
• Indirect detection?
• Many examples of “cogenesis”

• Misalignment mechanism to produce ultralight (<eV) cold 
relic
• QCD relic

[See Petraki and Volkas review]

ruled out, and in any case would constitute the discovery of new physics were it true. The
third generic solution has the DM being primordial black holes, perhaps formed entirely
from the collapse of ordinary matter. This solution also requires physics beyond the SM,
such as appropriate density fluctuations seeded during inflation, or bubble-wall collisions,
or whatever one can envisage to provide the required overdense regions.

This review focuses on the specific elementary particle proposal termed “asymmetric
dark matter (ADM)”.1 The motivation comes from the observation that the present-day
mass density of DM is about a factor of five higher than the density of VM [3, 4]

ΩDM ≃ 5ΩVM , (1.1)

where Ω as usual denotes the mass density of a given component relative to the critical
density. The similarity in these observed densities suggests a common origin, some kind of
a unification or strong connection between the physics and cosmological evolution of VM
and DM. The present-day density of VM has long been established as due to the baryon
asymmetry of the universe: some time during the early universe, a tiny excess of baryons
B over antibaryons B̄ evidently developed, parameterized by [3, 4]

η(B) ≡
nB − nB̄

s
≃ 10−10 , (1.2)

where number densities are denoted n, and s is entropy density.2 The baryons in the
universe today constitute the excess remaining after all of the antibaryons annihilated
with the corresponding number of baryons. The ADM hypothesis simply states that the
present-day DM density is similarly due to a DM particle-antiparticle asymmetry, and
that these asymmetries are related due to certain processes that occurred rapidly during
an early cosmological epoch but later decoupled.

Asymmetric DM may be contrasted with weakly-interacting massive particle or WIMP
DM (for a recent review see, for example, Ref. [5]). The latter postulates that the DM
is a thermal, non-relativistic relic particle (usually self-conjugate) with mass in the GeV-
TeV range that decouples when its weak-scale annihilations fall out of equilibrium due
to the Boltzmann suppression of the WIMP population. Famously, this cold DM (CDM)
scenario “miraculously” provides about the correct DM mass density for generic weak-
scale annihilation cross-section, with a specific value (weakly dependent on WIMP mass)
derived by fitting the abundance exactly. Furthermore, the idea fits in well with indepen-
dent particle-physics motivations for new weak-regime physics such as supersymmetry.
However, in almost all WIMP scenarios the similarity of the DM and VM densities then
must be taken to be a coincidence (with some attempts made to avoid this uncomfortable
conclusion [6–8]). The pure form of the WIMP hypothesis is now also rather strongly
constrained by direct and indirect DM detection bounds [9–11], and at the time of writing
there were no indications from the Large Hadron Collider (LHC) for WIMP production
in 7− 8 TeV pp collisions.

1For an earlier brief review of the subject, see Ref. [2].
2The asymmetry in a charge X is defined in general by η(X) ≡

∑

i Xi(ni−nī)/s where i denotes a species
carrying X-charge of Xi. An asymmetry normalized in this way is useful because it remains constant
during the isentropic expansion of the universe.

2



•A weak scale annihilation x-sec gives correct abundance
•Mass range is

•DM makes up 23% of the universe
•Gravitates like ordinary matter, but is non-baryonic 
•Is dark i.e. neutral under SM (not coloured, or charged)
•Does not interact much with itself
•Does not couple to massless particle
•Was no relativistic at time of CMB
•Is long lived  

IF DM is a thermal relic:

10 MeV <⇠ m� <⇠ 70 TeV
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WIMPs and BSM physics

•Higgs hierarchy problem “predicts” new states at weak 
scale with/without SM charge 
•Flavour constraints require high scale (1000 TeV) 
suppression of FCNC operators
•“New physics parity”
•LPOP often has possibility to be a DM WIMP

•WIMPs e.g. SUSY neutralino, KK-mode of UED, 
techni-baryons, lightest T-odd little Higgs particle, 
LPOPs....
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FIG. 1: Mass ranges for dark matter and mediator particle candidates, experimental anomalies,
and search techniques described in this document. All mass ranges are merely representative; for
details, see the text. The QCD axion mass upper bound is set by supernova constraints, and
may be significantly raised by astrophysical uncertainties. Axion-like dark matter may also have
lower masses than depicted. Ultralight Dark Matter and Hidden Sector Dark Matter are broad
frameworks. Mass ranges corresponding to various production mechanisms within each framework
are shown and are discussed in Sec. II. The Beryllium-8, muon (g � 2), and small-scale structure
anomalies are described in VII. The search techniques of Coherent Field Searches, Direct Detection,
and Accelerators are described in Secs. V, IV, and VI, respectively, and Nuclear and Atomic Physics
and Microlensing searches are described in Sec. VII.

II. SCIENCE CASE FOR A PROGRAM OF SMALL EXPERIMENTS426

Given the wide range of possible dark matter candidates, it is useful to focus the search427

for dark matter by putting it in the context of what is known about our cosmological history428

and the interactions of the Standard Model, by posing questions like: What is the (particle429

physics) origin of the dark matter particles’ mass? What is the (cosmological) origin of430

the abundance of dark matter seen today? How do dark matter particles interact, both431

with one another and with the constituents of familiar matter? And what other observable432

consequences might we expect from this physics, in addition to the existence of dark matter?433

Might existing observations or theoretical puzzles be closely tied to the physics of dark434

matter? These questions have many possible answers — indeed, this is one reason why435
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sub-keV DM

• Very light DM is bosonic
• Heavier than
• More appropriately thought of as semiclassical wave, large n
• Or, absorption of DM, linear coupling to matter
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FIG. 15: Mass range for ultralight dark matter. Very rough optimal frequency ranges are shown for
each experimental technique discussed in WG2. Names of particular experiments and proposals
discussed in this section are shown below their corresponding technique. The names are color-
coded by the DM coupling being searched for. This is only meant as a cartoon – for details of each
experiment’s sensitivity see the relevant discussion below.

Section Editors: Aaron Chou, Peter Graham1513

V. DETECTION OF ULTRA-LIGHT (SUB-MILLI-EV) DARK MATTER1514

The axion and hidden photon are well-motivated dark matter candidates with models1515

providing both viable production mechanisms and testable phenomenology. To date, only a1516

tiny fraction of the parameter space for such ultralight dark matter (as discussed in Section1517

III C) has been probed by existing experiments. Excitingly, thanks to significant growth in1518

interest in this area recently, there are now experiments or proposals which cover the entire1519

viable mass range down to 10�22 eV. These experiments are highly complementary in their1520

mass reach as well as coupling type; together they search for all four di↵erent possible types1521

of couplings the dark matter can have (discussed in Section III C). Figure 15 is a rough1522

cartoon of the complementary nature of these experiments, both in mass and coupling. In1523

particular, it now seems likely that a combination of these experiments can reach sensitivity1524

to the QCD axion over a broad range of axion masses.1525

Searches for dark matter in this mass range use techniques which are very di↵erent than1526

those used in traditional particle physics experiments. In this range the dark matter can1527

more usefully be thought of as a field (or wave) oscillating at a frequency equal to its1528

mass. Unlike a traditional particle detector (e.g. WIMP detection experiments) which looks1529

for the energy deposited by a single hard collision, detectors searching for such light dark1530

matter must look for the collective e↵ect of all the dark matter particles in the wave. This is1531

analogous to gravitational wave detectors which search not for individual graviton scattering1532
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an ideal preparation to tackle problems in broad areas of basic science, engineering, industry, and even the
financial sectors.

In this paper, we discuss the context for direct detection experiments in the search for dark matter and
describe briefly the current state of theoretical models for WIMPs. A brief review of the technologies
and experiments is presented, along with a discussion of facilities and instrumentation that enable such
experiments, and a description of other physics that these experiments can do. We end with a discussion
of how the field is likely to evolve over the next two decades, with a specific roadmap and criteria for new
experiments.

The international dark matter program is expected to evolve from currently-running (G1) experiments to
G2 experiments (defined as in R&D or construction now), to G3 experiments which will eventually reach
the irreducible neutrino background. Down-selection and consolidation will occur at each stage, given the
growing financial cost and manpower needs of these experiments. The DOE has a formal down-selection
process for one or more major G2 experiments. Since substantial NSF contributions are also expected,
XENON1T is considered to be a joint NSF/international US-led G2 experiment. Additional G2 experiments
may also move to construction in the coming year by either having relatively low overall cost or relatively
low cost to DOE/NSF. It is unclear when and how the U.S. funding agencies will select G3 experiments, but
such a stage is on their planning horizon. It is expected that only one or two U.S.-led G3 experiments at
the $100M range will be financially tenable.

3 Dark Matter Direct Detection in Context

Direct detection is only one method to search for dark matter. Because dark matter can potentially interact
with any of the known particles or, as in the case of hidden sector dark matter, another currently unknown
particle (as shown in Fig. 5), it is important to place direct detection in the larger context of dark matter
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electrons, muons, 

taus, neutrinos 

Photons, 
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Other dark 
particles 

Astrophysical  
Probes 
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SM DM 

SM DM 

Indirect 
Detection 

DM SM 

DM SM 

Direct 
Detection 

DM DM 
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Figure 5. Dark matter may have non-gravitational interactions with any of the known particles as well as
other dark particles, and these interactions can be probed in several di↵erent ways.

research. The Snowmass Cosmic Frontier Working Group CF4 has prepared a report [2] exploring the

Community Planning Study: Snowmass 2013

FIGURE 2. Simulated GLAST allsky map of neutralino DM annihilation in the Galactic halo, for a fiducial observer located 8
kpc from the halo center along the intermediate principle axis. We assumed Mχ = 46 GeV, ⟨σv⟩ = 5×10−26 cm3 s−1, a pixel size
of 9 arcmin, and a 2 year exposure time. The flux from the subhalos has been boosted by a factor of 10 (see text for explanation).
Backgrounds and known astrophysical gamma-ray sources have not been included.

DM ANNIHILATION ALLSKY MAP

Using the DM distribution in our Via Lactea simulation, we have constructed allsky maps of the gamma-ray flux from
DM annihilation in our Galaxy. As an illustrative example we have elected to pick a specific set of DM particle physics
and realistic GLAST/LAT parameters. This allows us to present maps of expected photon counts.

The number of detected DM annihilation gamma-ray photons from a solid angle ΔΩ along a given line of sight (θ ,
φ ) over an integration time of τexp is given by

Nγ (θ ,φ) = ΔΩ τexp
⟨σv⟩
M2
χ

[

∫ Mχ

Eth

(

dNγ
dE

)

Aeff(E)dE
]

∫

los
ρ(l)2dl, (2)

where Mχ and ⟨σv⟩ are the DM particle mass and velocity-weighted cross section, Eth and Aeff(E) are the detector
threshold and energy-dependent effective area, and dNγ/dE is the annihilation spectrum.

We assume that the DM particle is a neutralino and have chosen standard values for the particle mass and annihilation
cross section: Mχ = 46 GeV and ⟨σv⟩= 5×10−26 cm3 s−1. These values are somewhat favorable, but well within the
range of theoretically and observationally allowed models. As a caveat we note that the allowed Mχ -⟨σv⟩ parameter
space is enormous (see e.g. [7]), and it is quite possible that the true values lie orders of magnitude away from the
chosen ones, or indeed that the DM particle is not a neutralino, or not even weakly interacting at all. We include only
the continuum emission due to the hadronization and decay of the annihilation products (b  b and u  u only, for our low
Mχ ) and use the spectrum dNγ/dE given in [8].

For the detector parameters we chose an exposure time of τexp = 2 years and a pixel angular size of Δθ = 9 arcmin,
corresponding to the 68% containment GLAST/LAT angular resolution. For the effective area we used the curve
published on the GLAST/LAT performance website [9] and adopted a threshold energy of Eth = 0.45 GeV (chosen to
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Figure 12: Left : Neutrino isoevent contour lines (long dash orange) compared with current limits and regions of interest. The
contours delineate regions in the WIMP-nucleon cross section vs WIMP mass plane which for which dark matter experiments
will see neutrino events (see Sec. IIID). Right : WIMP discovery limit (thick dashed orange) compared with current limits
and regions of interest. The dominant neutrino components for different WIMP mass regions are labeled. Progress beyond
this line would require a combination of better knowledge of the neutrino background, annual modulation, and/or directional
detection. We show 90% confidence exclusion limits from DAMIC [55] (light blue), SIMPLE [56] (purple), COUPP [57] (teal),
ZEPLIN-III [58] (blue), EDELWEISS standard [59] and low-threshold [60] (orange), CDMS II Ge standard [61], low-threshold
[62] and CDMSlite [63] (red), XENON10 S2-only [64] and XENON100 [65] (dark green) and LUX [66] (light green). The filled
regions identify possible signal regions associated with data from CDMS-II Si [1] (light blue, 90% C.L.), CoGeNT [67] (yellow,
90% C.L.), DAMA/LIBRA [68] (tan, 99.7% C.L.), and CRESST [69] (pink, 95.45% C.L.) experiments. The light green shaded
region is the parameter space excluded by the LUX Collaboration.

3. Measurement of annual modulation. In the case of
a 6 GeV/c2 WIMP, next generation experiments
could reach sufficiently high statistics to disen-
tangle the WIMP and the neutrino contributions
using the 6% annual modulation rate of dark mat-
ter interactions [54]. However, in the case of hea-
vier WIMPs, very large and unrealistic exposures
would be required to obtain enough events to detect
such predicted annual modulation for cross sections
around 10−48 cm2. Furthermore, the atmospheric
neutrino event rate also undergoes annual modula-
tion due to the change in temperature of the atmos-
phere throughout the year [50]. A dedicated study
taking into account systematic uncertainties in the
neutrino fluxes and their modulations is required
to assess the feasibility of annual modulation dis-
crimination in light of atmospheric neutrino back-
grounds.

4. Measurement of the nuclear recoil direction as

suggested by upcoming directional detection expe-
riments [51]. Since the main neutrino background
has a solar origin, the directional signal of such
events is expected to be drastically different than
the WIMP-induced ones [52, 53]. This way, a
better discrimination between WIMP and neutrino
events will enhance the WIMP detection signifi-
cance allowing us to get stronger discovery limits.
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0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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For the case of inelastic �N ! �0N scattering it is given by

v
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=
1p

2mNEd

✓
mNEd

µ�N
+ �

◆
, (2)

where µ�N = m�mN/(m� +mN) is the reduced mass of the nucleus–DM system, with mN

and M� the nucleus and DM masses respectively, while � is the mass di↵erence between �0

and �. The same equation also applies to elastic �N ! �N scattering, with � = 0. As
observed in ref. [18] for appropriately chosen � one can suppress the signal in experiments
where DM scatters on lighter nuclei, while not significantly a↵ecting the rate in DAMA
(see also [35, 36]). Namely for � � mNEd/µ�N the minimal velocity v

min

falls with mN .
If the signal is coming from the tails of the velocity distributions, the di↵erence between
lighter and heavier nuclei, such as germanium vs. iodine, can be significant (for v

min

> v
esc

the scattering is completely absent). Furthermore, the inelasticity also suppresses the low
energy signal, changing the shape of the expected event rate from an exponentially falling
function of the recoil energy to a bump-like signal at higher energies. This, in addition,
improves the fit to the DAMA modulated signal energy spectrum.

The di↵erential cross section for scattering on a target nucleus is (per assumption) given
by the spin independent (SI) and spin dependent (SD) contributions, which are convention-
ally written as (see e.g. [37])

d�

dEd
=

mN

2µ2

�Nv
2

�
�SIF 2(Ed) + �SDS(Ed)

�
, (3)

where �SI,SD are the integrated SI and SD cross sections for DM scattering on nucleus,
but with form factors factored out. For the SI form factor F (Ed) we use [38] F (Ed) =
3e�2s2/2[sin(r) � r cos(r)]/(r)3, with s = 1 fm, r =

p
R2 � 5s2, R = 1.2A1/3 fm,

 =
p
2mNEd (and q2 ' �2). The SD form factor S(Ed) is computed according to ref. [39]

for 133Cs (abundant in the CsI crystals used by the KIMS experiment) and according to
ref. [40] for all other nuclei.

Even though the form factors were factored out of the definitions of �SI,SD, these quan-
tities still depend on nuclear structure through isospin content (the number of protons vs.
neutrons). The SI cross section is thus

�SI =
[Zfp + (A� Z)fn]2

f 2

p

µ2

�N

µ2

�p

�SI

p , (4)

with A the atomic mass number, Z the charge of the nucleus, fp,n the SI DM couplings to
proton and neutron respectivelly, µ�p the reduced DM–proton mass, and �SI

p the SI cross
section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of �SI

p . Since the ratio A/Z is similar for di↵erent nuclei this
choice mostly a↵ects only the overall value of �SI

p , while it does not a↵ect the relative sizes
of contributions from di↵erent experiments. It is easy to rescale our results for di↵erent
values of fp and fn through �SI

p ! �SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus
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0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].

LUX

3

FIG. 2. Ionization yield versus recoil energy in all detectors
included in this analysis for events passing all signal criteria
except (top) and including (bottom) the phonon timing crite-
rion. The curved black lines indicate the signal region (-1.8�
and +1.2� from the mean nuclear recoil yield) between 7 and
100 keV recoil energies for detector 3 in Tower 4, while the
gray band shows the range of charge thresholds across de-
tectors. Electron recoils in the detector bulk have yield near
unity. The data are colored to indicate recoil energy ranges
(dark to light) of 7–20, 20–30, and 30–100 keV to aid the
interpretation of Fig. 3.

of data taking (⇠24 hours ).
In yield, events were required to be within +1.2� and

�1.8� from the mean of the nuclear recoil yield. Can-
didate events were also required to have phonon pulse
timing consistent with a nuclear recoil. In order to take
advantage of the fact that the timing parameters are
better measured at high energies, the phonon timing
data-selection cut was optimized in three energy bins:
7–20 keV, 20–30 keV, and 30–100 keV [23]. Fig. 1 shows
the nuclear-recoil e�ciency i.e., the estimated fraction of
nuclear recoils at a given energy that would be accepted
by these signal criteria, measured using nuclear recoils
from 252Cf calibration. The abrupt changes in e�ciency
are due to the di↵erent detector thresholds and changes
to the timing cuts in the three energy bins. Signal ac-
ceptance was measured using nuclear recoils from 252Cf
calibration. After applying all selection criteria, the ex-
posure of this analysis is equivalent to 23.4 kg-days over
a recoil energy range of 7–100 keV for a WIMP of mass
10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [24] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons for this exposure with all e�ciencies included.

A greater source of background is the misidentifica-
tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the
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FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of the data, while the
thicker green curves are the histograms of nuclear recoils from
252Cf calibration data; both are normalized to have the same
arbitrary peak value.

WIMP-candidate region; these events are termed “leak-
age events”. Prior to looking at the WIMP-candidate
region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields consis-
tent with nuclear recoils from a previously unblinded Si
dataset [25] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scatters
on their outer faces could not be tagged as multiple scat-
ters. The rate of surface events on the outer faces of these
two detectors were estimated using their single-scatter
rates from a previously unblinded dataset presented in
[25] and the multiples-singles ratio on the interior de-
tectors. The final pre-unblinding estimate for misidenti-
fied surface electron-recoil event leakage into the signal
band in the eight Si detectors was 0.47+0.28

�0.17(stat.) events.
This initial leakage estimate informed the decision to un-
blind. After unblinding, we developed a Bayesian es-
timate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[21, 25]. Multiple-scatter events below the electron-recoil
ionization-yield region from both 133Ba calibration and
the WIMP-search data were used as inputs to this model.
Because the WIMP-search sample is sparser compared
to the calibration data, the combined estimates are more
heavily weighted towards the calibration data leakage es-
timates. Additionally the leakage estimate is corrected
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FIG. 2. Ionization yield versus recoil energy in all detectors
included in this analysis for events passing all signal criteria
except (top) and including (bottom) the phonon timing crite-
rion. The curved black lines indicate the signal region (-1.8�
and +1.2� from the mean nuclear recoil yield) between 7 and
100 keV recoil energies for detector 3 in Tower 4, while the
gray band shows the range of charge thresholds across de-
tectors. Electron recoils in the detector bulk have yield near
unity. The data are colored to indicate recoil energy ranges
(dark to light) of 7–20, 20–30, and 30–100 keV to aid the
interpretation of Fig. 3.

of data taking (⇠24 hours ).
In yield, events were required to be within +1.2� and

�1.8� from the mean of the nuclear recoil yield. Can-
didate events were also required to have phonon pulse
timing consistent with a nuclear recoil. In order to take
advantage of the fact that the timing parameters are
better measured at high energies, the phonon timing
data-selection cut was optimized in three energy bins:
7–20 keV, 20–30 keV, and 30–100 keV [23]. Fig. 1 shows
the nuclear-recoil e�ciency i.e., the estimated fraction of
nuclear recoils at a given energy that would be accepted
by these signal criteria, measured using nuclear recoils
from 252Cf calibration. The abrupt changes in e�ciency
are due to the di↵erent detector thresholds and changes
to the timing cuts in the three energy bins. Signal ac-
ceptance was measured using nuclear recoils from 252Cf
calibration. After applying all selection criteria, the ex-
posure of this analysis is equivalent to 23.4 kg-days over
a recoil energy range of 7–100 keV for a WIMP of mass
10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [24] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons for this exposure with all e�ciencies included.

A greater source of background is the misidentifica-
tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the
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FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of the data, while the
thicker green curves are the histograms of nuclear recoils from
252Cf calibration data; both are normalized to have the same
arbitrary peak value.

WIMP-candidate region; these events are termed “leak-
age events”. Prior to looking at the WIMP-candidate
region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields consis-
tent with nuclear recoils from a previously unblinded Si
dataset [25] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scatters
on their outer faces could not be tagged as multiple scat-
ters. The rate of surface events on the outer faces of these
two detectors were estimated using their single-scatter
rates from a previously unblinded dataset presented in
[25] and the multiples-singles ratio on the interior de-
tectors. The final pre-unblinding estimate for misidenti-
fied surface electron-recoil event leakage into the signal
band in the eight Si detectors was 0.47+0.28

�0.17(stat.) events.
This initial leakage estimate informed the decision to un-
blind. After unblinding, we developed a Bayesian es-
timate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[21, 25]. Multiple-scatter events below the electron-recoil
ionization-yield region from both 133Ba calibration and
the WIMP-search data were used as inputs to this model.
Because the WIMP-search sample is sparser compared
to the calibration data, the combined estimates are more
heavily weighted towards the calibration data leakage es-
timates. Additionally the leakage estimate is corrected

CDMS-Si
3

FIG. 3: Low-energy spectrum after all cuts, prior to efficiency
corrections. Arrows indicate expected energies for all viable
cosmogenic peaks (see text). Inset: Expanded threshold re-
gion, showing the 65Zn and 68Ge L-shell EC peaks. Over-
lapped on the spectrum are the sigmoids for triggering ef-
ficiency (dotted), trigger + microphonic PSD cuts (dashed)
and trigger + PSD + rise time cuts (solid), obtained via high-
statistics electronic pulser calibrations. Also shown are ref-
erence signals (exponentials) from 7 GeV/c2 and 10 GeV/c2

WIMPs with spin-independent coupling σSI = 10−4pb.

Fig. 3 displays Soudan spectra following the rise time
cut, which generates a factor 2-3 reduction in background
(Fig. 2). Modest PSD cuts applied against microphonics
are as described in [1]. This residual spectrum is domi-
nated by events in the bulk of the crystal, like those from
neutron scattering, cosmogenic activation, or dark mat-
ter particle interactions. Several cosmogenic peaks are
noticed, many for the first time. All cosmogenic prod-
ucts capable of producing a monochromatic signature are
indicated. Observable activities are incipient for all.

We employ methods identical to those in [1] to ob-
tain Weakly Interacting Massive Particle (WIMP) and
Axion-Like Particle (ALP) dark matter limits from these
spectra. The energy region employed to extract WIMP
limits is 0.4-3.2 keVee (from threshold to full range of
the highest-gain digitization channel). A correction is
applied to compensate for signal acceptance loss from
cumulative data cuts (solid sigmoid in Fig. 3, inset).
In addition to a calculated response function for each
WIMP mass [1], we adopt a free exponential plus a
constant as a background model to fit the data, with
two Gaussians to account for 65Zn and 68Ge L-shell
EC. The energy resolution is as in [1], with parameters
σn=69.4 eV and F=0.29. The assumption of an irre-
ducible monotonically-decreasing background is justified,
given the mentioned possibility of a minor contamination
from residual surface events and the rising concentration

FIG. 4: Top panel: 90% C.L. WIMP exclusion limits from
CoGeNT overlaid on Fig. 1 from [6]: green shaded patches
denote the phase space favoring the DAMA/LIBRA annual
modulation (the dashed contour includes ion channeling).
Their exact position has been subject to revisions [7]. The
violet band is the region supporting the two CDMS candi-
date events. The scatter plot and the blue hatched region
represent the supersymmetric models in [8] and their uncer-
tainties, respectively. Models including WIMPs with mχ ∼7-
11 GeV/cm2 provide a good fit to CoGeNT data (red contour,
see text). The relevance of XENON10 constraints in this low-
mass region has been questioned [14]. Bottom panel: Limits
on axio-electric coupling gaēe for pseudoscalars of mass ma

composing a dark isothermal galactic halo (see text).

towards threshold that rejected events exhibit. A sec-
ond source of possibly unaccounted for low-energy back-
ground are the L-shell EC activities from observed cos-
mogenics lighter than 65Zn. These are expected to con-
tribute < 15% of the counting rate in the 0.5-0.9 keVee
region (their L-shell/K-shell EC ratio is ∼ 1/8 [5]). A
third possibility, quantitatively discussed below, consists
of recoils from unvetoed muon-induced neutrons.

Fig. 4 (top) displays the extracted sensitivity in spin-
independent coupling (σSI) vs. WIMP mass (mχ). For
mχ in the range ∼7-11 GeV/c2 the WIMP contribu-
tion to the model acquires a finite value with a 90%
confidence interval incompatible with zero. The bound-
aries of this interval define the red contour in Fig. 4.
However, the null hypothesis (no WIMP component in
the model) fits the data with a similar reduced chi-
square χ2/dof =20.4/20 (for example, the best fit for
mχ = 9 GeV/c2 provides χ2/dof =20.1/18 at σSI =
6.7 × 10−41cm2). It has been recently emphasized [6]
that light WIMP models [1, 8, 9] provide a common ex-

CoGeNT
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Figure 8: Time variation for data centered on the Ge68 L-shell peak for two di⇥erent energy ranges.
The top panel shows the predicted cosmogenic contribution using Eq. A.1 and the parameters given
in Appendix A (black diamonds), as well as the (e⇧ciency corrected) time-binned distribution of the
data (red open circles). A constant of 1.4 counts/day/keVee (see unmodulated spectrum in Fig. 6)
has been added to the background. The bottom panel shows the residuals between the data and the
model (red). The dashed blue line is the best-fit modulation in the range 0.9–1.5 keVee, obtained
using the log-likelihood approach as in Fig. 6.

Boltzmann with velocity dispersion v0 = 220 km/s and escape velocity vesc = 550 km/s:

f(v) ⇥ (e�v2/v20 � e�v2esc/v
2
0 )�(vesc � v) , (4.1)

where v is the velocity in the galactic rest frame. More general velocity profiles will be

considered in the following subsections.

We carry out fits using an unbinned extended maximum likelihood approach and a binned

�2 analysis. For the unbinned method, we define a likelihood function that includes the

dark matter signal, the cosmogenic backgrounds, and a constant background with floating

normalization. The likelihood function accounts for e⇧ciencies and shutdown periods. For

the binned approach, the data is divided into five energy bins of equal size, spanning the range

from 0.5–3.0 keVee. Within each energy bin, the events are partitioned in fifteen equal-sized

time bins, each approximately one month wide. We subtract cosmogenic backgrounds and

correct for the shutdown periods of the detector (the e⇧ciencies are accounted for in the
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Figure 8: Time variation for data centered on the Ge68 L-shell peak for two di⇥erent energy ranges.
The top panel shows the predicted cosmogenic contribution using Eq. A.1 and the parameters given
in Appendix A (black diamonds), as well as the (e⇧ciency corrected) time-binned distribution of the
data (red open circles). A constant of 1.4 counts/day/keVee (see unmodulated spectrum in Fig. 6)
has been added to the background. The bottom panel shows the residuals between the data and the
model (red). The dashed blue line is the best-fit modulation in the range 0.9–1.5 keVee, obtained
using the log-likelihood approach as in Fig. 6.

Boltzmann with velocity dispersion v0 = 220 km/s and escape velocity vesc = 550 km/s:

f(v) ⇥ (e�v2/v20 � e�v2esc/v
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0 )�(vesc � v) , (4.1)

where v is the velocity in the galactic rest frame. More general velocity profiles will be

considered in the following subsections.

We carry out fits using an unbinned extended maximum likelihood approach and a binned

�2 analysis. For the unbinned method, we define a likelihood function that includes the

dark matter signal, the cosmogenic backgrounds, and a constant background with floating

normalization. The likelihood function accounts for e⇧ciencies and shutdown periods. For

the binned approach, the data is divided into five energy bins of equal size, spanning the range

from 0.5–3.0 keVee. Within each energy bin, the events are partitioned in fifteen equal-sized

time bins, each approximately one month wide. We subtract cosmogenic backgrounds and
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Nuclear radius rN ⇠ A1/3fm
J.D. Lewin, PR StnithIAstroparticle Physics 6 (1996) 87-112 99 

Fig. 6. Form factor versus q for Na. - Fermi density, data from 1181. ...‘..... Helm density: rR from (4.10), (4.11); s = 0.9 
fm. - - - - - Helm density, Engel [ 151 fit: rms = 0.93A’k s = I .O fm. 

Fig. 7. Form factor versus q for I. Figure legend: same as Fig. 6. 
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Fig. 8. Form factor versus ER for Na. - Fermi density, data from [ 181. - - - - - Helm density: r, = 1.14A1i3; s = 0.9 fm. 

Fig. 9. Form factor versus ER for I. Figure legend: same. as Fig. 8. 

Such calculations, where available, should be used to set limits on specific WIMPS. 

[Lewin and Smith]

SI:Helm, or Fermi distribution

S(q) = a20S00(q) + a0a1S01(q) + a21S11(q)
SD:

Converting nuclear to 
nucleon x-sec

For the case of inelastic ⌃N ⇤ ⌃⇥N scattering it is given by

vmin =
1⇧

2mNEd

⇤
mNEd

µ⇥N
+ �

⌅
, (2)

where µ⇥N = m⇥mN/(m⇥ +mN) is the reduced mass of the nucleus–DM system, with mN

and M⇥ the nucleus and DM masses respectively, while � is the mass di�erence between ⌃⇥

and ⌃. The same equation also applies to elastic ⌃N ⇤ ⌃N scattering, with � = 0. As
observed in ref. [18] for appropriately chosen � one can suppress the signal in experiments
where DM scatters on lighter nuclei, while not significantly a�ecting the rate in DAMA
(see also [35, 36]). Namely for � ⇥ mNEd/µ⇥N the minimal velocity vmin falls with mN .
If the signal is coming from the tails of the velocity distributions, the di�erence between
lighter and heavier nuclei, such as germanium vs. iodine, can be significant (for vmin > vesc
the scattering is completely absent). Furthermore, the inelasticity also suppresses the low
energy signal, changing the shape of the expected event rate from an exponentially falling
function of the recoil energy to a bump-like signal at higher energies. This, in addition,
improves the fit to the DAMA modulated signal energy spectrum.

The di�erential cross section for scattering on a target nucleus is (per assumption) given
by the spin independent (SI) and spin dependent (SD) contributions, which are convention-
ally written as (see e.g. [37])

d⇧

dEd
=

mN

2µ2
⇥Nv

2

�
⇧SIF 2(Ed) + ⇧SDS(Ed)

⇥
, (3)

where ⇧SI,SD are the integrated SI and SD cross sections for DM scattering on nucleus,
but with form factors factored out. For the SI form factor F (Ed) we use [38] F (Ed) =
3e��2s2/2[sin(⇥r) � ⇥r cos(⇥r)]/(⇥r)3, with s = 1 fm, r =

⇧
R2 � 5s2, R = 1.2A1/3 fm,

⇥ =
⇧
2mNEd (and q2 ⌅ �⇥2). The SD form factor S(Ed) is computed according to ref. [39]

for 133Cs (abundant in the CsI crystals used by the KIMS experiment) and according to
ref. [40] for all other nuclei.

Even though the form factors were factored out of the definitions of ⇧SI,SD, these quan-
tities still depend on nuclear structure through isospin content (the number of protons vs.
neutrons). The SI cross section is thus

⇧SI =
[Zfp + (A� Z)fn]2

f 2
p

µ2
⇥N

µ2
⇥p

⇧SI
p , (4)

with A the atomic mass number, Z the charge of the nucleus, fp,n the SI DM couplings to
proton and neutron respectivelly, µ⇥p the reduced DM–proton mass, and ⇧SI

p the SI cross
section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of ⇧SI

p . Since the ratio A/Z is similar for di�erent nuclei this
choice mostly a�ects only the overall value of ⇧SI

p , while it does not a�ect the relative sizes
of contributions from di�erent experiments. It is easy to rescale our results for di�erent
values of fp and fn through ⇧SI

p ⇤ ⇧SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus

⇧SDS(Ed) =
4µ2

⇥N⌅

3µ2
⇥pa

2
p(2J + 1)

[a20S00(q) + a0a1S01(q) + a21S11(q)]⇧
SD
p , (5)
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Some “standard candles”
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0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
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distribution [36], with v
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background-only hypothesis of 0.35. The 90% C. L.
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uncertainty in the position of the NR band was estimated
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simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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In galactic frame:

per unit detector mass at a DM direct detection experiment is given by [22]

dR

dER
=

NT mN ρχ

2µ2
Nχ mχ

∫

vmin

d3v⃗
f(v⃗, v⃗E)

v
σN F 2(ER) , (2.1)

where mN ≈ AmP is the nucleus mass with mP the proton mass and A the atomic number;

F (ER) is the nuclear form factor and accounts for the fact that the cross section drops as

one moves away from zero momentum transfer; the two-parameter Fermi charge distribution

is used to calculate F (ER) throughout this paper [23]; NT is the number of target nuclei per

unit mass, given by NT = NA/A with Avogadro’s number, NA = 6.02 × 1026 kg−1; σN is the

cross section to scatter of a nucleus, and µNχ is the reduced mass of the DM-nucleus system.

The DM mass is mχ and we take the local DM density to be ρχ = 0.3 GeV/cm3. The velocity

of the dark matter onto the (Earth-borne) target is v⃗. The Earth’s velocity in the galactic

frame, v⃗E , is the sum of the Earth’s motion around the Sun [22] and the Sun’s motion in the

galaxy [24]. We assume the WIMP velocity distribution is Maxwell-Boltzmann with velocity

dispersion v0 = 220 km/s. Thus,

f(v⃗, v⃗E) =
1

(π v2
0)

3/2
e−(v⃗+v⃗E)2/v2

0 . (2.2)

As a function of time in the galactic frame, the Earth’s velocity is vE ≈ 227+14.4 cos [2π
(

t−t0
T

)

]

km/s, with T = 1 year and t0 is around June 2nd. The DM velocity distribution is cut-off

at the galactic escape velocity. Thus, the upper limit of the integration in (2.1) is given by

|⃗v + v⃗E| ≤ vesc, and the lower limit, since we will consider elastic scatters, is given by

vmin =

√

mNER

2µ2
Nχ

. (2.3)

The current allowed range for the galactic escape velocity [25] is 498 km/s ≤ vesc ≤ 608

km/s. For concreteness we set vesc = 500 km/s. Increasing this value slightly increases our

allowed parameter space, but the general features remain unchanged. Because of different

energy detection efficiencies for different detectors, a quench factor fq is introduced to relate

the observed recoil energy, ĒR, to the actual recoil energy ER, ER = ĒR/fq. This allows one

to convert Eq. (2.1) to the experimental differential spectrums as dR/dĒR = 1/fq dR/dER.

For example, we take the quench factor fq = 0.085 for the iodine element in the DAMA

experiment.

In the usual calculation the nuclear cross section σN is related to the nucleon scattering

cross section, σp, by,

σN =
(Zfp + (A − Z)fn)2

f2
p

µ2
Nχ

µ2
nχ

σp , (2.4)

where fp,n are the coupling strengths of DM to protons and neutrons and µnχ is the DM-

nucleon reduced mass. Here however, we wish to work explicitly with the nuclear scattering

cross section, and leave relating it to the microscopic Lagrangian to later, section 3. In
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For example, we take the quench factor fq = 0.085 for the iodine element in the DAMA

experiment.

In the usual calculation the nuclear cross section σN is related to the nucleon scattering

cross section, σp, by,

σN =
(Zfp + (A − Z)fn)2

f2
p

µ2
Nχ

µ2
nχ

σp , (2.4)

where fp,n are the coupling strengths of DM to protons and neutrons and µnχ is the DM-

nucleon reduced mass. Here however, we wish to work explicitly with the nuclear scattering

cross section, and leave relating it to the microscopic Lagrangian to later, section 3. In

– 3 –

In Earth’s frame:

2-4 keV

 Time (day)

R
es

id
u

a
ls

 (
cp

d
/k

g
/k

eV
) DAMA/NaI (0.29 ton!yr)

(target mass = 87.3 kg)
DAMA/LIBRA (0.53 ton!yr)

(target mass = 232.8 kg)

2-5 keV

 Time (day)

R
es

id
u

a
ls

 (
cp

d
/k

g
/k

eV
) DAMA/NaI (0.29 ton!yr)

(target mass = 87.3 kg)
DAMA/LIBRA (0.53 ton!yr)

(target mass = 232.8 kg)

2-6 keV

 Time (day)

R
es

id
u

a
ls

 (
cp

d
/k

g
/k

eV
) DAMA/NaI (0.29 ton!yr)

(target mass = 87.3 kg)
DAMA/LIBRA (0.53 ton!yr)

(target mass = 232.8 kg)

Figure 2: Model-independent residual rate of the single-hit scintillation events, mea-
sured by the new DAMA/LIBRA experiment in the (2 – 4), (2 – 5) and (2 – 6) keV
energy intervals as a function of the time. The residuals measured by DAMA/NaI and
already published in ref. [4, 5] are also shown. The zero of the time scale is January
1st of the first year of data taking of the former DAMA/NaI experiment. The exper-
imental points present the errors as vertical bars and the associated time bin width
as horizontal bars. The superimposed curves represent the cosinusoidal functions be-
haviours A cosω(t − t0) with a period T = 2π

ω = 1 yr, with a phase t0 = 152.5 day
(June 2nd) and with modulation amplitudes, A, equal to the central values obtained by
best fit over the whole data, that is: (0.0215± 0.0026) cpd/kg/keV, (0.0176± 0.0020)
cpd/kg/keV and (0.0129±0.0016) cpd/kg/keV for the (2 – 4) keV, for the (2 – 5) keV
and for the (2 – 6) keV energy intervals, respectively. See text. The dashed vertical
lines correspond to the maximum of the signal (June 2nd), while the dotted vertical
lines correspond to the minimum. The total exposure is 0.82 ton×yr.
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Figure 2: Model-independent residual rate of the single-hit scintillation events, mea-
sured by the new DAMA/LIBRA experiment in the (2 – 4), (2 – 5) and (2 – 6) keV
energy intervals as a function of the time. The residuals measured by DAMA/NaI and
already published in ref. [4, 5] are also shown. The zero of the time scale is January
1st of the first year of data taking of the former DAMA/NaI experiment. The exper-
imental points present the errors as vertical bars and the associated time bin width
as horizontal bars. The superimposed curves represent the cosinusoidal functions be-
haviours A cosω(t − t0) with a period T = 2π

ω = 1 yr, with a phase t0 = 152.5 day
(June 2nd) and with modulation amplitudes, A, equal to the central values obtained by
best fit over the whole data, that is: (0.0215± 0.0026) cpd/kg/keV, (0.0176± 0.0020)
cpd/kg/keV and (0.0129±0.0016) cpd/kg/keV for the (2 – 4) keV, for the (2 – 5) keV
and for the (2 – 6) keV energy intervals, respectively. See text. The dashed vertical
lines correspond to the maximum of the signal (June 2nd), while the dotted vertical
lines correspond to the minimum. The total exposure is 0.82 ton×yr.
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Does annual modulation = discovery of DM? 

Many things modulate on a year timescale:
•temperature
•water loading
•radon abundance
•ice-cream sales....

But, very few line up year-on-year with June 2nd
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DM models pre-DAMA

DAMA direct detection 
experimentalist?
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DM: a phenomenologist’s playground

Explore the landscape of possible ways DM can interact 
with the SM

Experiments originally designed for a ~100 GeV SUSY 
WIMP, but there are many more possibilities

Thankfully many experiments and clever 
experimentalists



Light Dark Matter

Motivated by fact that ΩDM ∼ 5 Ωb

If baryon and DM abundance related then expect DM to 
be (5-10) x proton mass
Also, hard for direct detection because of thresholds, 
backgrounds, etc    (ask Rick ☺)



Inelastic Dark Matter (iDM) [Weiner and Tucker-Smith]

dR
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mχ − mχ′ = δ ∼ 100 keV

•Requires “large” momentum exchange to upscatter
•Favours high velocity tail of MB distribution
•Increased modulation
•Prefers heavy targets e.g. iodine, xenon, tungsten,..
•Recoil spectrum has a peak

All of the above helped to make DAMA consistent with 
CDMS, predicts events at other heavy element detectors
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Exothermic DM (exoDM)

I. INTRODUCTION

The recent observation by CDMS-Si is potentially a BFD. In order to determine whether

to get excited we compare the observation at CDMS to various constraints, as well as

to other potential signal. We do so under the assumption of elastically scattering DM,

isospin-dependent dark matter, and exothermic DM. We will compare the experimental

results in an astrophysics independent fashion. In addition we consider several experimental

uncertainties, and emphasise that in many cases existing, but unpublished, information

about the scattering rate below current thresholds may hold the key to determining the

validity of a DM interpretation.

II. DM AND ASTROPHYSICS MODELS

For DM scattering o↵ nuclei the di↵erential rate is given by,

dR

dER
=

NT⇢�
m�

Z vesc

vmin

d3~vf(~v(t))
d�|~v|
dER

, (1)

where NT denotes the number of scattering targets and ⇢� is the local DM density (typically

taken to be 0.3 GeV/cm3). We will focus our attentions on spin-independent couplings[32],

the most abundant isotope of silicon carries no spin, for which the nuclear di↵erential scat-

tering cross section is related to the neutron cross section by,

d�

dER
= F 2

N(ER)
mN

2µ2
n�v

2

(Zfp + (A� Z)fn)2

f 2
n

�n . (2)

The nuclear form factor, FN , takes into account the fact that at non-zero momentum ex-

change the interaction can resolve the nuclear structure.

In the general case where the scattering of the DM involves a transition of the DM to

another dark-sector particle, DM0, whose mass di↵ers by � the relationship between the

minimum incoming speed necessary and recoil energy, ER, is given by,

vmin =
1p

2mNER

����
mNER

µN�
+ �

���� . (3)

We now briefly describe the experiments we are interested in.

2

[Graham, Harnik, Rajendran, Saraswat]

SM

χ

SM

χ

χ χ
′

m� �m�0 = � ⇠ �10 keV

•Can deposit energy even at zero speed
•Decreased (but still some) modulation
•Prefers light targets 
•Recoil spectrum has a peak



0 20 40 60 80 100
0

100
200
300
400
500
600
700

ER @keVD

v m
in
@km
êsD

e/i/exo-DM

Ge, 100 GeV, δ=0,± 20 keV



Form Factor DM [Chang, Weiner, Pierce and Feldstein, Fitzpatrick, Katz]
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Figure 1: Overlap in q of the DAMA signal with several null experiments. The height of the
null experiments has no particular meaning.

to flatten the spectrum of events observed at DAMA compared to the steep rise at low re-
coil energies predicted by a standard light elastically scattering WIMP. Both of the above

purposes may be served simultaneously by a form factor which falls off appropriately at low

momentum transfers.

Now, a key point is that the events seen by DAMA between qi and qf essentially lead to a
direct prediction (up to modulation fraction) for the events to be seen at other experiments

within that same range of momentum transfers. These predictions are more or less indepen-
dent of the choice of form factor, and it is therefore not immediately obvious whether they
alone are enough to rule out form factor dark matter as an explanation for DAMA. The most

basic question we must answer is thus the following: does there exist any function F (q) for
the form factor - which we may take to be zero outside of the range qi < q < qf - which allows

for the DAMA modulating signal, but which does not overpredict the number of events to be
seen between qi and qf at other experiments?

Later we will consider explicit models that give rise to form factors, but for the moment
we would like to answer this question while being as agnostic as possible about the model-
building aspects. Thus we will begin by working with a physically unmotivated form factor,

chosen solely with the goal of fitting the DAMA observed spectrum while simultaneously
being consistent with the null experiments. To achieve this, we will construct a form factor

to explicitly put the signal just below the 1σ error bar at DAMA, bin-by-bin1. Furthermore,
outside the range of the DAMA signal (i.e. below q = 80 MeV), we set the form factor
to zero. An example is shown in Fig. 3. To evaluate the consistency of this form factor

with experiment, we calculate the probability of the low number of potential signal events
at CDMS and CRESST-II using the pmax method [5, 20], which is based on the number of

1More precisely, we construct the signal to be 80% of the signal-minus-1σ rate.

5

[arXiv:0908.2991]

DM has a form factor, dipole coupling to light gauge boson

SM

χ

SM

χ

1

Λ2
Dµφ†DνφFµν

•Form factors suppress certain ranges of recoil energy
•Works best with SD couplings, or non-standard velocity 
distributions e.g. via Lactea
•Although suppresses events at other detectors still 
expect some signal
•Peak in spectrum at non-zero recoil energy

dR

dER

=
NT mN ρχ

2 µ2
Nχ mχ

∫ vmax

vmin

d3v⃗
f(v⃗, v⃗E)

v
σN F 2(ER)
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seen between qi and qf at other experiments?

Later we will consider explicit models that give rise to form factors, but for the moment
we would like to answer this question while being as agnostic as possible about the model-
building aspects. Thus we will begin by working with a physically unmotivated form factor,

chosen solely with the goal of fitting the DAMA observed spectrum while simultaneously
being consistent with the null experiments. To achieve this, we will construct a form factor

to explicitly put the signal just below the 1σ error bar at DAMA, bin-by-bin1. Furthermore,
outside the range of the DAMA signal (i.e. below q = 80 MeV), we set the form factor
to zero. An example is shown in Fig. 3. To evaluate the consistency of this form factor

with experiment, we calculate the probability of the low number of potential signal events
at CDMS and CRESST-II using the pmax method [5, 20], which is based on the number of

1More precisely, we construct the signal to be 80% of the signal-minus-1σ rate.
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•Form factors suppress certain ranges of recoil energy
•Works best with SD couplings, or non-standard velocity 
distributions e.g. via Lactea
•Although suppresses events at other detectors still 
expect some signal
•Peak in spectrum at non-zero recoil energy
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A moment with the photon [Pospelov and ter Veldhuis]

Although DM is electrically neutral it can have higher 
electromagnetic moments e.g. EDM, MDM, 
quadropoles, anapole, charge radius,...

DM couples to nucleus through photon exchange

Leads to interesting momentum dependence e.g.

SM

χ

SM

χ

γ

We relate q2 to the nuclear recoil energy in the lab frame, q2 = 2mAER, and find

dσEDM

dER
=

1

4π
d2χZ

2e2
(S + 1)

3S

1

v2r

1

ER
|GE(q

2)|2 . (2)

The 1/(v2rER) dependence is characteristic of the EDM of the DM particle.3

To have an EDM, the DM particle cannot be self-conjugate. Consequently, for S = 1
2 , the

particle has to be Dirac. Note that the spin factor S+1
3S becomes 1 for S = 1

2 in our numerical

illustrations. Our result also applies to the anti-dark matter particle under the assumption that

CPT is conserved.

core (i.e., with atomic masses above 20) is obtained by the Fourier transform in the limit c ≫ a0,

GE(q) =

[

πa0

c
sin(qc) cosh(πa0q)

sinh2(πa0q)
− cos(qc)

sinh(πa0q)

]

4π2ρa0c
q

, ρ0 =
3

4πc3
1

1 + (a0π/c)2
.

Note that GE(0) = 1.
3The differential reaction rate (per unit detector mass) is

dR
dER

=
ρ0
mχ

1
mA

∫

∞

vmin

vrf1(vr)
dσ
dER

dvr ,

where the local DM density ρ0 = 0.3 GeV/cm3 and vmin =
√

mAER
2m2

r
. dR/dER includes contributions from both χ

and its conjugate χ̄ for they have the same cross sections.

In the non-relativistic limit, the differential cross section can be Maclaurin expanded in powers of vr. The two

most important contributions are

dσ ∼ 1
v2r

d{σ−}+ d{σ+} ,

with vr independent coefficients denoted by brackets. (For example, in Eq. 1, d{σ−} is the coefficient of v−2
r , and

d{σ+} = 0.) Usually, the first term is the relevant one (as in the EDM, CFF, or SI cases). However, in certain

cases like MDM, the second term may compete due to the 1/ER enhancement from the low energy virtual photon

propagator. On integrating, we find

dR
dER

=
ρ0
mχ

1
mA

[

d{σ−}
dER

1
v0

I− +
d{σ+}
dER

v0I+

]

,

where the dimensioless integrals are defined by

I−
N

=
v0
2vE

[

erf

(

vu
v0

)

− erf

(

vd
v0

)

− 2√
π

(

vu
v0

− vd
v0

)

e−v2
esc

/v2
0

]

,

and
I+
N

=

(

vd
2vE

√
π
+

1√
π

)

e−v2
d/v

2
0 −

(

vu
2vE

√
π
− 1√

π

)

e−v2
u/v2

0

+
v0
4vE

(

1 +
2v2E
v20

)(

erf

(

vu
v0

)

− erf

(

vd
v0

))

− 1√
π

[

2 +
1

3vEv20

(

(vmin + vesc − vd)
3 − (vmin + vesc − vu)

3)
]

e−v2
esc

/v2
0 ,

with the shorthand vu = min(vmin + vE , vesc), vd = min(vmin − vE , vesc). Note that I− = 0 for vmin > vesc + vE .
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Isospin dependent DM [Kurylov and Kamionkowski; Feng and Kumar]

Typically assume fn~fp
But different elements have different ratios of p/n
Can remove some of the strongest constraints if

fn
fp

⇡ �0.7



Isospin dependent DM [Kurylov and Kamionkowski; Feng and Kumar]

For the case of inelastic �N ! �0N scattering it is given by

v
min

=
1p

2mNEd

✓
mNEd

µ�N
+ �

◆
, (2)

where µ�N = m�mN/(m� +mN) is the reduced mass of the nucleus–DM system, with mN

and M� the nucleus and DM masses respectively, while � is the mass di↵erence between �0

and �. The same equation also applies to elastic �N ! �N scattering, with � = 0. As
observed in ref. [18] for appropriately chosen � one can suppress the signal in experiments
where DM scatters on lighter nuclei, while not significantly a↵ecting the rate in DAMA
(see also [35, 36]). Namely for � � mNEd/µ�N the minimal velocity v

min

falls with mN .
If the signal is coming from the tails of the velocity distributions, the di↵erence between
lighter and heavier nuclei, such as germanium vs. iodine, can be significant (for v

min

> v
esc

the scattering is completely absent). Furthermore, the inelasticity also suppresses the low
energy signal, changing the shape of the expected event rate from an exponentially falling
function of the recoil energy to a bump-like signal at higher energies. This, in addition,
improves the fit to the DAMA modulated signal energy spectrum.

The di↵erential cross section for scattering on a target nucleus is (per assumption) given
by the spin independent (SI) and spin dependent (SD) contributions, which are convention-
ally written as (see e.g. [37])

d�

dEd
=

mN

2µ2

�Nv
2

�
�SIF 2(Ed) + �SDS(Ed)

�
, (3)

where �SI,SD are the integrated SI and SD cross sections for DM scattering on nucleus,
but with form factors factored out. For the SI form factor F (Ed) we use [38] F (Ed) =
3e�2s2/2[sin(r) � r cos(r)]/(r)3, with s = 1 fm, r =

p
R2 � 5s2, R = 1.2A1/3 fm,

 =
p
2mNEd (and q2 ' �2). The SD form factor S(Ed) is computed according to ref. [39]

for 133Cs (abundant in the CsI crystals used by the KIMS experiment) and according to
ref. [40] for all other nuclei.

Even though the form factors were factored out of the definitions of �SI,SD, these quan-
tities still depend on nuclear structure through isospin content (the number of protons vs.
neutrons). The SI cross section is thus

�SI =
[Zfp + (A� Z)fn]2

f 2

p

µ2

�N

µ2

�p

�SI

p , (4)

with A the atomic mass number, Z the charge of the nucleus, fp,n the SI DM couplings to
proton and neutron respectivelly, µ�p the reduced DM–proton mass, and �SI

p the SI cross
section for scattering of DM on a proton. In the fits we will assume fp = fn for definiteness
and quote results in terms of �SI

p . Since the ratio A/Z is similar for di↵erent nuclei this
choice mostly a↵ects only the overall value of �SI

p , while it does not a↵ect the relative sizes
of contributions from di↵erent experiments. It is easy to rescale our results for di↵erent
values of fp and fn through �SI

p ! �SI
p /(Z/A+ (1� Z/A)fn/fp)2.

The SD cross section depends in addition on the spin J of the nucleus

�SDS(Ed) =
4µ2

�N⇡

3µ2

�pa
2

p(2J + 1)
[a2

0

S
00

(q) + a
0

a
1

S
01

(q) + a2
1

S
11

(q)]�SD

p , (5)
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Resonant Dark Matter (rDM) [Bai and PJF]

•Cross section is velocity dependent
•In particular the velocity dependence is “resonant”
•Picks out small range of velocities
•Increases modulation 
•In our particular model realisation scattering is highly 
element dependent 

dR

dER

=
NT mN ρχ

2 µ2
Nχ mχ

∫ vmax

vmin

d3v⃗
f(v⃗, v⃗E)

v
σN F 2(ER)

Νr " 450 km ! s

∆ " 150 km ! s
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Figure 1: DM velocity distribution after angular integration in the summer (red) and winter (blue)
for the usual Maxwell-Boltzmann distribution (dashed) and for the case with a resonance (solid) at
450 km/s with width 150 km/s, the escape velocity was taken to be 500 km/s.

particular, in the usual approach σp is velocity, and element independent. We will see that

in rDM these statements are no longer true.

In rDM, the DM or its gauge partner, forms a short-lived bound state with the target

nucleus. The mass of the bound state is denoted as mr. In this case the DM-nucleus elastic

scattering cross section has a resonant structure. In the non-relativistic limit, one has s =

(mχ + mN )2 + mχmNv2. For
√

s close to the resonance mass, a familiar formula is obtained,

σN =
2Jr + 1

(2sχ + 1)(2sN + 1)

π

k2

Γ2
r→χN

(E − mr)2 + Γ2
tot/4

, (2.5)

where E =
√

s is the center of mass energy; sχ and sN are the spins of the dark matter

and the target nucleus; Jr is the total angular momentum of the resonant bound state. In

the non-relativistic limit, the scattering process is dominated by the s-wave, so a selection

rule,
−→
Jr = −→sχ + −→sN , applies to the accessible bound state. Γr→χN is the partial width of

the boundstate decaying into χ plus N and is a function of the centre of mass energy. The

total width Γtot may be larger than this width due to the existence of other decay modes,

we will discuss this in more detail in Section 3. The momentum of the DM in the center of

momentum frame is k = µNχ v. Note that if there exists more than one resonance, the cross

section is the sum over all resonances, each given by (2.5). Since the DM is non-relativistic,

we can rewrite the cross section as a resonance in velocity,

σN = σ0
v2
r

v2

δ2/π

(v2 − v2
r )2 + δ4

. (2.6)

– 4 –
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•In particular the velocity dependence is “resonant”
•Picks out small range of velocities
•Increases modulation 
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rule,
−→
Jr = −→sχ + −→sN , applies to the accessible bound state. Γr→χN is the partial width of

the boundstate decaying into χ plus N and is a function of the centre of mass energy. The
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section is the sum over all resonances, each given by (2.5). Since the DM is non-relativistic,
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Figure 1: A compilation of WIMP-nucleon spin-independent cross section limits (solid

lines) and hints of WIMP signals (closed contours) from current dark matter experiments

and projections (dashed) for planned direct detection dark matter experiments. Also

shown is an approximate band where neutrino coherent scattering from solar neutrinos,

atmospheric neutrinos and di↵use supernova neutrinos will dominate [13].

results from other experiments. At this point, we do not have conclusive
evidence of a dark matter signal. Hence, it is necessary to have experiments
using several technologies and a variety of targets located in di↵erent loca-
tions to maximize the chances of discovery and to confirm any claimed dark
matter signal. Figure 1 presents the current limits and favored regions of
current experiments and projections of the parameter space we will be able
to explore with the next generation of experiments. As we look forward to
the next decade, it is clear that with a diverse portfolio we will be able to
explore parameter space all the way to the neutrino floor [13].
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Billard, Figueroa-Feliciano, Strigari

How low can we go?

[Taken from Cooley, 1410.4960]



Indirect Detection



6

an ideal preparation to tackle problems in broad areas of basic science, engineering, industry, and even the
financial sectors.

In this paper, we discuss the context for direct detection experiments in the search for dark matter and
describe briefly the current state of theoretical models for WIMPs. A brief review of the technologies
and experiments is presented, along with a discussion of facilities and instrumentation that enable such
experiments, and a description of other physics that these experiments can do. We end with a discussion
of how the field is likely to evolve over the next two decades, with a specific roadmap and criteria for new
experiments.

The international dark matter program is expected to evolve from currently-running (G1) experiments to
G2 experiments (defined as in R&D or construction now), to G3 experiments which will eventually reach
the irreducible neutrino background. Down-selection and consolidation will occur at each stage, given the
growing financial cost and manpower needs of these experiments. The DOE has a formal down-selection
process for one or more major G2 experiments. Since substantial NSF contributions are also expected,
XENON1T is considered to be a joint NSF/international US-led G2 experiment. Additional G2 experiments
may also move to construction in the coming year by either having relatively low overall cost or relatively
low cost to DOE/NSF. It is unclear when and how the U.S. funding agencies will select G3 experiments, but
such a stage is on their planning horizon. It is expected that only one or two U.S.-led G3 experiments at
the $100M range will be financially tenable.

3 Dark Matter Direct Detection in Context

Direct detection is only one method to search for dark matter. Because dark matter can potentially interact
with any of the known particles or, as in the case of hidden sector dark matter, another currently unknown
particle (as shown in Fig. 5), it is important to place direct detection in the larger context of dark matter

Dark Matter 

Nuclear Matter 
quarks, gluons 

Leptons 
electrons, muons, 

taus, neutrinos 

Photons, 
W, Z, h bosons 

Other dark 
particles 

Astrophysical  
Probes 

DM DM 

DM DM 

Particle 
Colliders 

SM DM 

SM DM 

Indirect 
Detection 

DM SM 

DM SM 

Direct 
Detection 

DM DM 

SM SM 

Figure 5. Dark matter may have non-gravitational interactions with any of the known particles as well as
other dark particles, and these interactions can be probed in several di↵erent ways.

research. The Snowmass Cosmic Frontier Working Group CF4 has prepared a report [2] exploring the

Community Planning Study: Snowmass 2013

Usually refers to DM annihilation/decay products in Galaxy (or 
extra-galactic), or from capture + annihilation in Sun, Earth,…

Not present for asymmetric DM



DM profiles
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Figure 1: DM profiles and the corresponding parameters to be plugged in the functional forms
of eq. (1). The dashed lines represent the smoothed functions adopted for some of the computations
in Sec. 4.1.3. Notice that we here provide 2 (3) decimal significant digits for the value of r

s

(⇢
s

):
this precision is su�cient for most computations, but more would be needed for specific cases, such
as to precisely reproduce the J factors (discussed in Sec.5) for small angular regions around the
Galactic Center.

Next, we need to determine the parameters r
s

(a typical scale radius) and ⇢
s

(a typical
scale density) that enter in each of these forms. Instead of taking them from the individual
simulations, we fix them by imposing that the resulting profiles satisfy the findings of
astrophysical observations of the Milky Way. Namely, we require:

- The density of Dark Matter at the location of the Sun r� = 8.33 kpc (as determined
in [48]; see also [49] 3) to be ⇢� = 0.3 GeV/cm3. This is the canonical value routinely
adopted in the literature (see e.g. [1, 2, 51]), with a typical associated error bar of
±0.1 GeV/cm3 and a possible spread up to 0.2 ! 0.8 GeV/cm3 (sometimes refereed
to as ‘a factor of 2’). Recent computations have found a higher central value and
possibly a smaller associated error, still subject to debate [52, 53, 54, 55].

- The total Dark Matter mass contained in 60 kpc (i.e. a bit larger than the distance to
the Large Magellanic Cloud, 50 kpc) to be M60 ⌘ 4.7⇥ 1011M�. This number is based
on the recent kinematical surveys of stars in SDSS [56]. We adopt the upper edge of
their 95% C.L. interval to conservatively take into account that previous studies had
found somewhat larger values (see e.g. [57, 58]).

The parameters that we adopt and the profiles are thus given explicitly in fig. 1. Notice that
they do not di↵er much (at most 20%) from the parameter often conventionally adopted in
the literature (see e.g. [2]), so that our results presented below can be quite safely adopted
for those cases.

of spherical symmetry, in absence of better determinations, seems to be still well justified. Moreover, it is
the current standard assumption in the literature and we therefore prefer to stick to it in order to allow
comparisons. In the future, the proper motion measurements of a huge number of galactic stars by the
planned GAIA space mission will most probably change the situation and give good constraints on the
shape of our Galaxy’s DM halo, e.g. [46], making it worth to reconsider the assumption. For what concerns
the impact of non-spherical halos on DM signals, charged particles signals are not expected to be a↵ected,
as they are sensistive to the local galactic environment. For an early analysis of DM gamma rays al large
latitudes see [47].

3The commonly adopted value used to be 8.5 kpc on the basis of [50].
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FIG. 5. Tangential vs radial velocity components (km/s) of dark matter within a radial shell 7.5 < r < 9.5

kpc in the Galactic frame. On the left, the distribution for dark matter debris and in the middle, the

distribution for all VL2 particles in this radial shell. The right panel shows the distribution of debris

particles (blue triangles) and all VL2 particles without the debris contribution (red circles) as a function of

cos ✓e, where ✓e is the angle between the velocities of the particles in the Galactic frame and the direction

of Earth’s motion.

where the threshold speed v

min

is given by
p

mNER/2µ

2 for elastic scattering. If the scattering

is dominated by a Maxwellian distribution f(v) / v

2

e

�v2/v2
0 in the Galactic frame, the expected

recoil spectrum is exponentially falling [1]. If, in contrast, the local dark matter is dominated by a

stream, then the scattering rate is constant up to a recoil energy corresponding to |~v
stream

�~ve| [62],

where ~ve is given in Eq. 2.

The particles in the debris flow have speeds characterized by the distribution function

f(v) =
1

N

dN

dv

=
1

N

dN

d cos ✓e

d cos ✓e

dv

(5)

in the Earth frame, where N is the total number of debris particles and ✓e is the angle between

the velocities of the flow particles in the Galactic frame and the direction of Earth’s motion. This

angle is related to the Earth-frame velocities through

v

2 = v

2

flow

+ ve(t)
2 � 2v

flow

ve(t) cos ✓e, (6)

where v

flow

is the speed of the debris flow in the Galactic frame. A complete expression for f(v)

depends on how the debris particles are distributed as a function of cos ✓e. Figure 5 shows the

tangential and radial Galactic-frame velocity distributions for the debris (left) and for all VL2

particles (middle) in a 7.5–9.5 kpc radial shall. The right panel shows the distribution of debris

particles as a function of cos ✓e. The results show that the debris flow is nearly uniformly distributed

(isotropic) in cos ✓e, with dN/d cos ✓e = N/2.

Debris flow, Lisanti et al.

Figure 2: All-sky maps (in a Mollweide projection) of the Sommerfeld-enhanced annihilation surface brightness
(
∫

los
ρ2S dℓ) from all Via Lactea II dark matter particles within 400 kpc. The observer is located at 8 kpc from

the halo center along the host halo’s intermediate principal axis. A: No Sommerfeld enhancement. B: S ∼ 1/v,
saturated at ∼ 1 km s−1. C: S ∼ 1/v2 saturated at ∼ 5 km s−1. The maps have been normalized to give the same
total smooth host halo flux.

the Galactic Center (Fig. 2). In Sommerfeld-enhanced models, substructures are much more
clearly visible, and can even outshine the Galactic Center when the cross-section is close to
resonance and saturates at low velocities. Furthermore, baryonic processes will tend to heat up
the Galactic Center and dim its Sommerfeld boost, and thereby increase the relative detectability
of subhalos. Dark matter halos are not isothermal and have smaller velocity dispersions in the
center (see Supporting Online Material). In addition to an overall increase in the annihilation

4

[Cirelli et al]

[Kuhlen et al]

Z
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Figure 1: Left: The �-ray spectrum produced by a single W , Z, Higgs boson, and top quark,
decaying at rest, weighted by E2

� . Right: The residual spectrum of the Galactic center excess
taken from [13]. The error bars only show the diagonal part of the covariance matrix, and
have a large degree of correlation between them. We also show the four best-fit spectra from
the Fermi analysis [14] which fit the excess well. We will dub these, from softest to hardest,
as Fermi spectra (a) through (d). The normalization N corrects for the di↵erence in the
region of interest between the two analyses.

full uncertainty on the spectrum is taken into account.
It is interesting to notice the rough similarity between the two panels of Figure 1.

This observation leads to the consideration of dark matter models that could explain the
GCE with dark matter annihilating to electroweak bosons or to tops. In most previous
dark matter interpretations of the GCE, starting with [2, 3], the dark matter was assumed
to annihilate into bottom quarks or ⌧ leptons. Assuming these annihilation channels (and
without including the new Fermi uncertainties), the mass of dark matter that best fits the
excess is in the region of 30 to 50 GeV for b’s and around 10 GeV for ⌧ leptons. In addition,
dark matter annihilation into new particles which decay further to b’s or jets have been
considered. All of of these options present interesting model building challenges and several
interesting attempts have been made [15–56], mostly for annihilation to b’s, ⌧ 0s and jets.

We find that WIMP dark matter annihilating to W ’s, Z’s, Higgses, or tops, can fit
the observed excess reasonably well. We show that this is the case for the spectra found
in [13], and this result is reinforced by the recent Fermi result. In particular, if we take
the union of the preferred regions for each analysis, we find that the range of DM masses
can extend well above what was previously thought. We show a summary of the results in
Table 1. This opens up several simple dark matter model building avenues for the GCE.
It was noted that the simplest supersymmetric models with a thermal relic fail to fit the
signal [52] assuming annihilation into bottom quarks. We will find that once electroweak
gauge bosons are considered, the signal may be explained within the MSSM.

We begin by reviewing features of the photon flux from dark matter annihilation in
Section 2, focusing on relevant inputs which a↵ect the rate and shape of the flux. In Section 3
we describe the excess seen by the CCW [13] and Fermi [14] analyses, and present fits to
the GC excess in the mass versus cross section plane for the final states described above. In
Section 4 we discuss several simple models which lead to dark matter annihilation into weak
gauge bosons, Higgses or tops. We conclude in section 5.

– 3 –
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2.3 Overview of the effects affecting propagation 7

N j(E) ≡ dnj/dE. As the momentum distribution
function is normalized to the total cosmic ray num-
ber density (n = 4π

∫

dp p2f), we have N j(E) =
(4π/β)p2f j to finally obtain, assuming steady-state
(see Sec. 2.4.6),

−∇⃗
[

K∇⃗N j(E)− V⃗cN
j(E)

]

− ΓjN j

− (∇⃗.V⃗c)

3

∂

∂E

[

p2

E
N j(E)

]

= Qj(E) +

∂

∂E

[

−btot(E)N j(E) + β2Kpp
∂N j(E)

∂E

]

;(6)

where the following notation has been used for the
total energy loss term btot = bloss + breac, with

bloss(E) =

(

dE

dt

)

Ion

+

(

dE

dt

)

Coul

+

(

dE

dt

)

Adiab

and the reacceleration drift term defined as

breac(E) =
(1 + β2)

E
Kpp .

We also use a compact notation to describe the most
general form for a source term

Qj(E) = q0Q
j(E) +

mk>mj
∑

k

ΓkjNk(0) , (7)

which includes primary sources – normalized abun-
dance q0, spectrum Qj(E) –, but also secondary
sources, coming from spallations (see Sec. 2.4.6) or
radioactive decay of a heavier species (see Sec. 2.4.8).
The relative magnitude of all the effects affect-
ing propagation can be estimated from the typical
timescale associated with these effects, as displayed
in Fig. 1.

Taking advantage of cylindrical symmetry and
adding radioactive contributions localized in the disc
and the halo, the previous equation may be rewritten
as (making implicit the energy dependence)

0 =
(

Ldiff − Γj
rad

)

N j(r, z) +

mk>mj
∑

k

Γkj
rad(E)Nk

+2hδ(z)
(

qj
0Q(E)q(r) − Γj(E)N j(r, 0)

)

+2hδ(z)

mk>mj
∑

k

Γkj(E)Nk(r, 0) (8)

with

Ldiff = −Vc
∂

∂z
+ K(E)

(

∂2

∂z2
+

1

r

∂

∂r

(

r
∂

∂r

))

.

One needs to solve a complete triangular-like set of
coupled equations since a given nucleus can only be

Figure 1: Characteristic times of several processes af-
fecting the propagation of cosmic rays are displayed
in the 100 MeV/nuc-100 GeV/nuc energy range.
Typical values K0 = 0.03 kpc2 Myr−1, δ = 0.6 and
Vc = 10 km s−1 were considered. The dominant pro-
cess at energies higher than a few GeV is the escape
through the boundaries of the diffusive volume. The
effect of spallations is seen to be small for the prop-
agation of protons, whereas it is crucial for heavy
nuclei such as Fe.

a lighter. Quantities in this equation are functions
of spatial coordinates (not time, steady-state being
assumed) and of kinetic energy per nucleon (energy
for short) since this is the appropriate parameter to
be used, as it is conserved in spallation reactions.
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Figure 2: Schematic view of our Galaxy as well as
all propagation steps included in our model.
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Propagation

• Assume steady state, simplifying geometry, cylindrical 
symmetry 

• Diffusion coefficient determined by random magnetic fields

• Losses due to synchrotron, ICS, spallation etc.  Depends on 
distribution of magnetic fields, starlight, matter etc in galaxy

• Many complexities, parameters.  Use GALPROP

 = 0

✓
E

GeV

◆�

Electrons or positrons Antiprotons (and antideuterons)
Model � K0 [kpc2/Myr] � K0 [kpc2/Myr] Vconv [km/s] L [kpc]
MIN 0.55 0.00595 0.85 0.0016 13.5 1
MED 0.70 0.0112 0.70 0.0112 12 4
MAX 0.46 0.0765 0.46 0.0765 5 15

Table 1: Propagation parameters for charged particles in the Galaxy (from [110, 111]).

⇢(~x) provide the source term Q of eq. (7), which reads

Q =
1

2

✓
⇢

MDM

◆2

f ann
inj , f ann

inj =
X

f

h�vi
f

dN f

e

±

dE
(annihilation), (11)

Q =

✓
⇢

MDM

◆
fdec
inj , fdec

inj =
X

f

�
f

dN f

e

±

dE
(decay), (12)

where f runs over all the channels with e± in the final state, with the respective thermal
averaged cross sections �v or decay rate �.

4.1.2 Electrons or positrons: result

The di↵erential flux of e± d�
e

±/dE = v
e

±f/4⇡ in each given point of our Galaxy for any
injection spectrum can be written as

d�
e

±

dE
(E, ~x) =

v
e

±

4⇡ b(E, ~x)

8
>>>><

>>>>:

1

2

✓
⇢(~x)

MDM

◆2 X

f

h�vi
f

Z
MDM

E

dEs

dN f

e

±

dE
(Es) I(E,Es, ~x) (annihilation)

✓
⇢(~x)

MDM

◆X

f

�
f

Z
MDM/2

E

dEs

dN f

e

±

dE
(Es) I(E,Es, ~x) (decay)

(13)
where Es is the e± energy at production (‘s’ stands for ‘source’) and the generalized halo

functions I(E,Es, ~x) are essentially the Green functions from a source with fixed energy
Es to any energy E. In other words, the halo functions I encapsulate all the astrophysics
(there is a halo function I for each choice of DM distribution profile and choice of e±

propagation parameters) and are independent of the particle physics model: convoluted
with the injection spectra, they give the final spectrum searched for. They obey I(E,E, ~x) =
1 and I(E,Es, ~x) = 0 on the boundary of the di↵usion cylinder. Neglecting di↵usion (i.e.
setting K = 0) one would have I(E,Es, ~x) = 1. These functions are provided numerically
on the website [29] in the form of MathematicaR� interpolating functions. Plugged in
eq. (13), they allow to compute the e± flux everywhere in the Galaxy.

The functions particularized to the location of the Earth, that is: I(E,Es,~r�), are
plotted in fig. 6 and provided numerically on the website [29] too. Plugged in eq. (13),
these allow to compute the e± flux at the location of the Earth, �(✏, r�, z�). We also
provide separately the resulting fluxes (see the next subsection 4.2.1).

The generalized halo functions I are computed as follows (the uninterested reader can
skip the rest of this section). Due to numerical issues it is convenient to search for the

21







Dark Matter Indirect Detection

�� ! pp̄, e+e�

�� ! ⌫⌫̄

�� ! ��

�� !SM SM

,! . . .+ ��

DM annihilates in our galaxy,  or nearby dwarf galaxy e.g.

Look for antimatter in cosmic rays, does not 
point back to source, limited range.  
PAMELA,  AMS02, Fermi

Point back to source, low cross section.  
IceCube, ANTARES, Super-K

Point back to source, spectral line, low rate
Fermi, HESS

Point back to source, continuum with edge, 
backgrounds
Fermi, HESS



Experiments
• Balloons, satellites, space stations
• Need magnetic field to distinguish charges

y Installation on the ISS on the 19th of May 2011 
y Orbit at 400 km altitude 
y One orbit every 90 minutes 

 
 

y A particle detector in space 
y Detect charged particles 
y From 100 MeV to a few TeV 

 

 
y Detect the cosmic rays before they interact in the atmosphere 

11 Vincent Poireau 

AMS-02 

5m x 4m x 3m 
7.5 tons 

AMS-02ATIC Fermi



Experiments
• Balloons, satellites, space stations
• Need magnetic field to distinguish charges

y Installation on the ISS on the 19th of May 2011 
y Orbit at 400 km altitude 
y One orbit every 90 minutes 

 
 

y A particle detector in space 
y Detect charged particles 
y From 100 MeV to a few TeV 

 

 
y Detect the cosmic rays before they interact in the atmosphere 

11 Vincent Poireau 

AMS-02 

5m x 4m x 3m 
7.5 tons 

AMS-02ATIC Fermi

PAMELA

especially in connection with ground-based measurements at hundreds of
GeV.
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Figure 27: Expected spectra of protons (left) and helium (right) that can be obtained by
DAMPE, assuming the AMS-02 fluxes and their extrapolations, with an exposure of 0.3 m2

sr yr, compared with current measurements [77, 78, 79, 80, 144].
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Figure 28: Current measurement [93, 97, 95, 98, 99] and the expected spectrum of cosmic
ray electrons (and positrons) for three years operation of DAMPE, assuming the AMS-02
intensity, a cut-o↵ and the contribution of Vela as calculated in [145]. Note that some nearby
young/middle-aged supernova remnants may give rise to additional TeV bump(s) in the spec-
trum.

5.2. Probing the nature of dark matter

As early as the 1930s, it was recognized that some matter in the Universe
is invisible [107]. The existence of this so-called dark matter was gradually
and firmly established since the early 1970s [108]. In the standard model of
cosmology, the ordinary matter, dark matter and dark energy share 4.9%, 26.6%
and 68.5% of today’s total energy density of the Universe. Compelling evidence
shows that the commonly existing dark matter is non-baryonic; however, the
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FIGURE 2. Simulated GLAST allsky map of neutralino DM annihilation in the Galactic halo, for a fiducial observer located 8
kpc from the halo center along the intermediate principle axis. We assumed Mχ = 46 GeV, ⟨σv⟩ = 5×10−26 cm3 s−1, a pixel size
of 9 arcmin, and a 2 year exposure time. The flux from the subhalos has been boosted by a factor of 10 (see text for explanation).
Backgrounds and known astrophysical gamma-ray sources have not been included.

DM ANNIHILATION ALLSKY MAP

Using the DM distribution in our Via Lactea simulation, we have constructed allsky maps of the gamma-ray flux from
DM annihilation in our Galaxy. As an illustrative example we have elected to pick a specific set of DM particle physics
and realistic GLAST/LAT parameters. This allows us to present maps of expected photon counts.

The number of detected DM annihilation gamma-ray photons from a solid angle ΔΩ along a given line of sight (θ ,
φ ) over an integration time of τexp is given by

Nγ (θ ,φ) = ΔΩ τexp
⟨σv⟩
M2
χ

[

∫ Mχ

Eth

(

dNγ
dE

)

Aeff(E)dE
]

∫

los
ρ(l)2dl, (2)

where Mχ and ⟨σv⟩ are the DM particle mass and velocity-weighted cross section, Eth and Aeff(E) are the detector
threshold and energy-dependent effective area, and dNγ/dE is the annihilation spectrum.

We assume that the DM particle is a neutralino and have chosen standard values for the particle mass and annihilation
cross section: Mχ = 46 GeV and ⟨σv⟩= 5×10−26 cm3 s−1. These values are somewhat favorable, but well within the
range of theoretically and observationally allowed models. As a caveat we note that the allowed Mχ -⟨σv⟩ parameter
space is enormous (see e.g. [7]), and it is quite possible that the true values lie orders of magnitude away from the
chosen ones, or indeed that the DM particle is not a neutralino, or not even weakly interacting at all. We include only
the continuum emission due to the hadronization and decay of the annihilation products (b  b and u  u only, for our low
Mχ ) and use the spectrum dNγ/dE given in [8].

For the detector parameters we chose an exposure time of τexp = 2 years and a pixel angular size of Δθ = 9 arcmin,
corresponding to the 68% containment GLAST/LAT angular resolution. For the effective area we used the curve
published on the GLAST/LAT performance website [9] and adopted a threshold energy of Eth = 0.45 GeV (chosen to

Simulation of DM photon signal in our galaxy
channel from to [GeV]
WW mW 165
ZZ mZ 190
hh mh 280
tt̄ mt 310
bb̄ 35 GeV 165

Table 1: The allowed dark matter mass range for �� ! XX, with X = {h, W±, Z, t, b},
found by combining the preferred regions from the results of our fits to the GCE.

2 Dark Matter Annihilation at the Galactic Center

While DM can annihilate directly to a pair of hard photons, this process is typically loop
suppressed. The production of photons is dominated by production of SM particles which
subsequently produce photons through decays, or to a lesser extent bremsstrahlung. The
di↵erential flux of such photons from a given direction  is given by,

dN

d⌦dE
( ) =

1

4⇡⌘

f2

�J( )

m2

�

X

i

h�vii dN i

dE�
, (2.1)

with ⌘ = 2(4) for self-conjugate (non-self-conjugate) DM. The quantity dN i/dE� is the
spectrum of photons obtained per annihilation for the final state i. The line-of-sight integral,
J( ), is given by

J( ) =

Z

l.o.s.
ds ⇢(r)2 , (2.2)

where r is the distance from the Galactic center. The quantity f� is the fraction of dark
matter that is doing the annihilation. For simplicity we will assume only one species � is
annihilating, but the formalism can be trivially generalized to many by taking a sum.

In this section we will discuss each of the factors in (2.1) in turn, paying attention to
the uncertainties and their relation to dark matter properties. We will begin with the line-of-
sight integral, J( ), continue with the annihilation fraction f�, and then discuss the spectra
dN i/dE� in Section 2.3.

2.1 The Line-of-Sight Integral and Halo Uncertainties

Since the dark matter density peaks sharply towards the center of the Galaxy, the Galactic
center is a promising place to look for dark matter annihilations. In practice, the backgrounds
near the center of the Galaxy are poorly understood, and it is not possible to perform a model
independent subtraction. One approach that is commonly used is to include an additional
dark matter component to the fit in addition to the various background components. It is
found that the fit improves dramatically when such a dark matter component is included.
The photons absorbed by the dark matter template are the residuals, to which di↵erent
hypotheses can be compared.

The current sensitivity to di↵erent dark matter profiles is somewhat poor. In order to
compare results across di↵erent analyses, it is convenient to define a canonical dark matter
profile. A typical choice is the (generalized) Navarro-Frenk-White (NFW) [57] profile,

⇢(r) = ⇢
0

(r/rs)
��

(1 + r/rs)
3�� . (2.3)
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FIG. 2: The gamma ray spectrum measured by the FGST within 0.5◦ (left) and 3◦ (right) of the Milky Way’s dynamical
center. In each frame, the dashed line denotes the predicted spectrum from a 28 GeV dark matter particle annihilating to
bb̄ with a cross section of σv = 9 × 10−26 cm3/s, and distributed according to a halo profile slightly more cusped than NFW
(γ = 1.1). The dotted and dot-dashed lines denote the contributions from the previously discovered TeV point source located
at the Milky Way’s dynamical center and the diffuse background, respectively. The solid line is the sum of these contributions.

pion decay taking place with a roughly spherically sym-
metric distribution around the Galactic Center, for ex-
ample, could be difficult to distinguish. Further informa-
tion will thus be required to determine the origin of these
photons.

Acknowledgements: We would like to thank Doug

Finkbeiner for his help in processing the FGST data. We
would also like to thank Greg Dobler and Neal Weiner
for their helpful comments. DH is supported by the
US Department of Energy, including grant DE-FG02-
95ER40896, and by NASA grant NAG5-10842.

[1] P. Ullio, L. Bergstrom, J. Edsjo and C. G. Lacey, Phys.
Rev. D 66, 123502 (2002) [arXiv:astro-ph/0207125];
A. V. Belikov and D. Hooper, arXiv:0906.2251 [astro-
ph.CO]; S. Profumo and T. E. Jeltema, JCAP 0907, 020
(2009) [arXiv:0906.0001 [astro-ph.CO]].

[2] F. Stoehr et al., Mon. Not. Roy. Astron. Soc. 345,
1313 (2003) [arXiv:astro-ph/0307026]; V. Springel et al.,
arXiv:0809.0894 [astro-ph].

[3] G. D. Martinez et al., JCAP 0906, 014 (2009)
[arXiv:0902.4715 [astro-ph.HE]]; N. W. Evans, F. Fer-
rer and S. Sarkar, Phys. Rev. D 69, 123501 (2004)
[arXiv:astro-ph/0311145]; L. Bergstrom and D. Hooper,
Phys. Rev. D 73, 063510 (2006) [arXiv:hep-ph/0512317].

[4] M. Kuhlen, J. Diemand and P. Madau, arXiv:0805.4416
[astro-ph]; L. Pieri, E. Branchini and S. Hofmann, Phys.
Rev. Lett. 95, 211301 (2005) [arXiv:astro-ph/0505356].

[5] L. Bergstrom, P. Ullio and J. H. Buckley, As-
tropart. Phys. 9, 137 (1998) [arXiv:astro-ph/9712318];
V. Berezinsky, A. Bottino and G. Mignola, Phys. Lett.
B 325, 136 (1994) [arXiv:hep-ph/9402215]; A. Cesarini,
F. Fucito, A. Lionetto, A. Morselli and P. Ullio, As-
tropart. Phys. 21, 267 (2004) [arXiv:astro-ph/0305075];

[6] A. M. Ghez et al., Astrophys. J. 601, L159
(2004) [arXiv:astro-ph/0309076]; A. Eckart et al.,
arXiv:astro-ph/0512440.

[7] V. Vitale [FERMI-LAT Collaboration], AIP Conf. Proc.
1112, 164 (2009); C. Meurer [Fermi LAT Collaboration],
AIP Conf. Proc. 1085, 719 (2009); T. Ylinen, Y. Ed-
monds, E. D. Bloom and J. Conrad [FERMI-LAT Col-
laboration], arXiv:0812.2853 [astro-ph].

[8] S. Dodelson, D. Hooper and P. D. Serpico, Phys.
Rev. D 77, 063512 (2008) [arXiv:0711.4621 [astro-ph]];
D. Hooper and B. L. Dingus, Phys. Rev. D 70, 113007
(2004) [arXiv:astro-ph/0210617].

[9] http://www-glast.slac.stanford.edu/software/IS/
[10] F. Aharonian et al. [The HESS Collaboration], Astron.

Astrophys. 425, L13 (2004) [arXiv:astro-ph/0408145];
See also C. van Eldik [HESS Collaboration], Nucl. In-
strum. Meth. A 588, 72 (2008).

[11] K. Kosack et al. [The VERITAS Collaboration], Astro-
phys. J. 608, L97 (2004) [arXiv:astro-ph/0403422]; J. Al-
bert et al. [MAGIC Collaboration], Astrophys. J. 638,
L101 (2006) [arXiv:astro-ph/0512469].

[12] F. Aharonian and A. Neronov, Astrophys.
J. 619, 306 (2005) [arXiv:astro-ph/0408303];
arXiv:astro-ph/0503354; AIP Conf. Proc. 745, 409
(2005); A. Atoyan and C. D. Dermer, Astrophys. J. 617,
L123 (2004) [arXiv:astro-ph/0410243].

[13] G. Zaharijas and D. Hooper, Phys. Rev. D 73, 103501
(2006) [arXiv:astro-ph/0603540].

[Goodenough and Hooper, 2009]

GCE (Gooperon)

diffuse bckgnd

known 
point source



7

0.5-1 GeV residual

 

-20-1001020 00
 

-20

-10

0

10

20

00

0

5

10

15

20

0

5

10

15

20

10
-6 counts/cm

2/s/sr

1-2 GeV residual

 

-20-1001020 00
 

-20

-10

0

10

20

00 

0

2

4

6

8

10

0

2

4

6

8

10
10

-6 counts/cm
2/s/sr

2-5 GeV residual

-20-1001020 00
 

-20

-10

0

10

20

00

0

1

2

3

4

5

0

1

2

3

4

5
10

-6 counts/cm
2/s/sr

5-20 GeV residual

-20-1001020 00
 

-20

-10

0

10

20

00 

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

10
-6 counts/cm

2/s/sr

FIG. 6: Intensity maps (in galactic coordinates) after subtracting the best-fit Galactic di↵use model, Fermi bubbles, and
isotropic templates. At energies between ⇠0.5-5 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly
visible around the Galactic Center.

analysis of Ref. [8], the cut on CTBCORE significantly
hardens the spectrum at energies below 1 GeV, render-
ing it more consistent with that extracted at higher lati-
tudes (see Appendix A). Shown for comparison (as a solid
line) is the spectrum predicted from a 35.25 GeV dark
matter particle annihilating to bb̄ with a cross section of
�v = 1.7 ⇥ 10�26 cm3/s ⇥ [(0.3GeV/cm3)/⇢

local

]2. The
spectrum of this component is in good agreement with
that predicted by this dark matter model, yielding a fit
of �2 = 26.4 over the 25 error bars between 0.3 and 100
GeV. We also note that the spectral shape of the dark
matter template is quite robust to variations in �, except
at energies below ⇠ 600 MeV, where the spectral shape

can vary non-negligibly with the choice of inner slope (see
Appendix C).

In Fig. 6, we plot the maps of the gamma-ray sky in
four energy ranges after subtracting the best-fit di↵use
model, Fermi Bubbles, and isotropic templates. In the
0.5-1 GeV, 1-2 GeV, and 2-5 GeV maps, the dark-matter-
like emission is clearly visible in the region surrounding
the Galactic Center. Much less central emission is vis-
ible at 5-20 GeV, where the dark matter component is
significantly less bright.
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Figure 7. Plain GCE energy spectrum as extracted from our baseline ROI, assuming a generalized
NFW profile with an inner slope � = 1.2, for all of the 60 GDE models (yellow lines). We highlight
the model that provides the best overall fit to the data (model F, green points) and our reference
model from the discussion in section 3 (model A, red points), together with ±1� statistical errors.
For all 60 GDE models, we find a pronounced excess that peaks at around 1–3 GeV, and follows a
falling power-law at higher energies.
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Figure 8. Energy spectra of di↵erent components (dotted lines) from a template fit to the data (black
points), compared to the predicted GDE model fluxes (solid lines). The reference model A is shown
in the left panel, while the GDE model that provides the best-fit to the data, model F, is shown in
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10

FIG. 9: The raw gamma-ray maps (left) and the residual maps after subtracting the best-fit Galactic di↵use model, 20 cm
template, point sources, and isotropic template (right), in units of photons/cm2/s/sr. The right frames clearly contain a
significant central and spatially extended excess, peaking at ⇠1-3 GeV. Results are shown in galactic coordinates, and all maps
have been smoothed by a 0.25� Gaussian.

of the Galactic Plane, while values greater than one are
preferentially extended perpendicular to the plane. In
each case, the profile slope averaged over all orientations
is taken to be � = 1.3 (left) and 1.2 (right). From this
figure, it is clear that the gamma-ray excess prefers to
be fit by an approximately spherically symmetric distri-
bution, and disfavors any axis ratio which departs from
unity by more than approximately 20%.

In Fig. 11, we generalize this approach within our
Galactic Center analysis to test morphologies that are

not only elongated along or perpendicular to the Galac-
tic Plane, but along any arbitrary orientation. Again,
we find that that the quality of the fit worsens if the the
template is significantly elongated either along or per-
pendicular to the direction of the Galactic Plane. A mild
statistical preference is found, however, for a morphology
with an axis ratio of ⇠1.3-1.4 elongated along an axis ro-
tated ⇠35� counterclockwise from the Galactic Plane in
galactic coordinates (a similar preference was also found
in our Inner Galaxy analysis). While this may be a statis-
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Figure 4: Top: Regions of parameter space which reproduce the Fermi best fit spectra.
We do not fit to Fermi data, but rather to their reported best-fit spectra with statistical
uncertainties only. We show the “��2” contours obtained for the hypotheses �� ! XX
for X = {h, W±, Z, t, b} fitting to Fermi’s spectrum (a) (low mass) and spectrum (d) (high
mass). Uncertainties from a full fit are likely to grow. Parameter space that is between the
best fit regions, along the diagonal dashed lines, are also likely allowed by variations of the
background model. Bottom: We show the spectra of photons obtained for the corresponding
best fit values in the upper plot. Fermi spectrum (b) is on the left and spectrum (d) is on
the right. The Fermi spectra are shown as a dashed line and the gray envelope shows the
statistical uncertainty we used in the fits.

statistical uncertainties we took for the fit. We see that the Fermi power-law-with-cuto↵
parametrization can be matched by many well motivated particle physics models. For spec-
trum (b) the fits are remarkably good, for the best fit points in (bb̄ , W±W⌥ , ZZ , hh , tt̄) final
state the �2, for the 20 bins of the Fermi result, are (2.6 , 1.8 , 2.6 , 4.6 , 2.0). For spectrum
(d) the corresponding �2 are (44 , 15 , 15 , 20 , 21).
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Are the excess photons from the Galactic centre DM?

•Source is spherical, with the expected radial dependence
•Cross section is close to thermal
•Centred in the right place
•Statistical significant, and Fermi-team sees it too

•Galactic centre is a confusing place
•Not as clear as a spectral line
•Milli-second pulsars (but we would have seen more, also 
spectrum different from those observed)

•Look at other DM “bright spots”--dwarf galaxies
•Cosmic ray anti-particles
•Correlated signals, LHC, direct detection
•Interesting times ahead



Other “indirect” signals

[Figure by Joakim Edsjo]
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Figure 1: DM capture rate in the Sun �capt of DM particles with mass MDM assuming a
Spin-Independent (left) or a Spin-Dependent (right) DM cross section on matter. We normalize
assuming a cross section on protons �

p

= 1pb and we adopt the indicated values for the param-
eters of the galactic DM velocity distribution. We show the total as well as the contributions from
the most relevant individual elements in the Sun. The dashed line is the analytical approximation
valid when the DM is much heavier than the nuclei.

2.1 The DM capture rate

As a consequence of the attained equilibrium, the computation of the annihilation rate �ann

crucially depends on the computation of the capture rate �capt, which acts as a bottleneck.
The computation of the latter proceeds by summing the contribution to capture of all the
individual shells of matter located at position r within the massive body. The result is [3]
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Its derivation is lengthy: we will only sketch it in the following by illustrating the individual
pieces of this equation.

• ⇢DM/MDM corresponds just to the local number density of DM particles at the location
of the capturing body.

• The sum runs over all kinds of nuclei i with mass m

i

and number density n
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(r), to be
integrated over the volume of the Sun. We take the standard solar elemental abundances
from [13]. The factor �

i

is the low-energy DM cross section on nucleus i, assumed to be
isotropic. In terms of the standard Spin Independent and Spin Dependent cross sections
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[Gould, 87; Cirelli et al. 1312.6408]

• DM abundance
• Target abundance in Sun (typically dominated by H, He)
• Scattering cross section (SI, SD)
• DM speed distribution in Sun’s frame
• Capture probability—favours slow moving DM

provided that it is captured. I.e., the probability is computed as the ratio of the size
of the interval in energy losses leading to capture (�Emin < �E < �Emax) relative
to the whole possible interval (0 < �E < �Emax), assuming a flat distribution of the
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Eq. (13) and (14) mean that the fraction of scatterings that lead to capture is largest for
nuclei with mass m

i

comparable to the DM mass MDM (�max is maximized) and for DM
particles that are slow (small v) and in the central regions of the body (large v�esc).

Fig. 1a shows the capture rate in the Sun having assumed a Spin Indipendent cross section
�

SI
p

= 1pb on protons. One sees that several elements contribute Fig. 1b shows the Spin
Dependent capture rate, with the corresponding assumption �

SD
p

= 1pb on protons. Only
Hydrogen matters for this kind of capture, with a very small contribution from Nitrogen.

The dotted lines in fig. 1 are simple approximations valid in the limit of heavy DM, MDM �
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Figure 1: DM capture rate in the Sun �capt of DM particles with mass MDM assuming a
Spin-Independent (left) or a Spin-Dependent (right) DM cross section on matter. We normalize
assuming a cross section on protons �

p

= 1pb and we adopt the indicated values for the param-
eters of the galactic DM velocity distribution. We show the total as well as the contributions from
the most relevant individual elements in the Sun. The dashed line is the analytical approximation
valid when the DM is much heavier than the nuclei.

2.1 The DM capture rate

As a consequence of the attained equilibrium, the computation of the annihilation rate �ann

crucially depends on the computation of the capture rate �capt, which acts as a bottleneck.
The computation of the latter proceeds by summing the contribution to capture of all the
individual shells of matter located at position r within the massive body. The result is [3]
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Its derivation is lengthy: we will only sketch it in the following by illustrating the individual
pieces of this equation.

• ⇢DM/MDM corresponds just to the local number density of DM particles at the location
of the capturing body.

• The sum runs over all kinds of nuclei i with mass m

i

and number density n

i

(r), to be
integrated over the volume of the Sun. We take the standard solar elemental abundances
from [13]. The factor �

i

is the low-energy DM cross section on nucleus i, assumed to be
isotropic. In terms of the standard Spin Independent and Spin Dependent cross sections

6

[Gould, 87; Cirelli et al. 1312.6408]

• DM abundance
• Target abundance in Sun (typically dominated by H, He)
• Scattering cross section (SI, SD)
• DM speed distribution in Sun’s frame
• Capture probability—favours slow moving DM

provided that it is captured. I.e., the probability is computed as the ratio of the size
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Eq. (13) and (14) mean that the fraction of scatterings that lead to capture is largest for
nuclei with mass m
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comparable to the DM mass MDM (�max is maximized) and for DM
particles that are slow (small v) and in the central regions of the body (large v�esc).

Fig. 1a shows the capture rate in the Sun having assumed a Spin Indipendent cross section
�

SI
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= 1pb on protons. One sees that several elements contribute Fig. 1b shows the Spin
Dependent capture rate, with the corresponding assumption �

SD
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= 1pb on protons. Only
Hydrogen matters for this kind of capture, with a very small contribution from Nitrogen.
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Eq. (13) and (14) mean that the fraction of scatterings that lead to capture is largest for
nuclei with mass m

i

comparable to the DM mass MDM (�max is maximized) and for DM
particles that are slow (small v) and in the central regions of the body (large v�esc).

Fig. 1a shows the capture rate in the Sun having assumed a Spin Indipendent cross section
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Figure 1: DM capture rate in the Sun �capt of DM particles with mass MDM assuming a
Spin-Independent (left) or a Spin-Dependent (right) DM cross section on matter. We normalize
assuming a cross section on protons �

p

= 1pb and we adopt the indicated values for the param-
eters of the galactic DM velocity distribution. We show the total as well as the contributions from
the most relevant individual elements in the Sun. The dashed line is the analytical approximation
valid when the DM is much heavier than the nuclei.

2.1 The DM capture rate

As a consequence of the attained equilibrium, the computation of the annihilation rate �ann

crucially depends on the computation of the capture rate �capt, which acts as a bottleneck.
The computation of the latter proceeds by summing the contribution to capture of all the
individual shells of matter located at position r within the massive body. The result is [3]
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Its derivation is lengthy: we will only sketch it in the following by illustrating the individual
pieces of this equation.

• ⇢DM/MDM corresponds just to the local number density of DM particles at the location
of the capturing body.

• The sum runs over all kinds of nuclei i with mass m

i

and number density n

i

(r), to be
integrated over the volume of the Sun. We take the standard solar elemental abundances
from [13]. The factor �

i

is the low-energy DM cross section on nucleus i, assumed to be
isotropic. In terms of the standard Spin Independent and Spin Dependent cross sections
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Figure 1: DM capture rate in the Sun �capt of DM particles with mass MDM assuming a
Spin-Independent (left) or a Spin-Dependent (right) DM cross section on matter. We normalize
assuming a cross section on protons �

p

= 1pb and we adopt the indicated values for the param-
eters of the galactic DM velocity distribution. We show the total as well as the contributions from
the most relevant individual elements in the Sun. The dashed line is the analytical approximation
valid when the DM is much heavier than the nuclei.

2.1 The DM capture rate

As a consequence of the attained equilibrium, the computation of the annihilation rate �ann

crucially depends on the computation of the capture rate �capt, which acts as a bottleneck.
The computation of the latter proceeds by summing the contribution to capture of all the
individual shells of matter located at position r within the massive body. The result is [3]
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Its derivation is lengthy: we will only sketch it in the following by illustrating the individual
pieces of this equation.

• ⇢DM/MDM corresponds just to the local number density of DM particles at the location
of the capturing body.

• The sum runs over all kinds of nuclei i with mass m
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and number density n
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(r), to be
integrated over the volume of the Sun. We take the standard solar elemental abundances
from [13]. The factor �
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is the low-energy DM cross section on nucleus i, assumed to be
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Figure 1: DM capture rate in the Sun �capt of DM particles with mass MDM assuming a
Spin-Independent (left) or a Spin-Dependent (right) DM cross section on matter. We normalize
assuming a cross section on protons �

p

= 1pb and we adopt the indicated values for the param-
eters of the galactic DM velocity distribution. We show the total as well as the contributions from
the most relevant individual elements in the Sun. The dashed line is the analytical approximation
valid when the DM is much heavier than the nuclei.

2.1 The DM capture rate
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(r), to be
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from [13]. The factor �

i
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= 1pb on protons. One sees that several elements contribute Fig. 1b shows the Spin
Dependent capture rate, with the corresponding assumption �

SD
p

= 1pb on protons. Only
Hydrogen matters for this kind of capture, with a very small contribution from Nitrogen.

The dotted lines in fig. 1 are simple approximations valid in the limit of heavy DM, MDM �
m

i

. In such a limit DM can be captured only if it is very slow,

v

M

DM

�mi
< 2v�esc

p
m

i

/MDM. (15)

Thereby the capture rate is proportional to 1/M

2
DM and can be approximated as

�capt

M

DM

�mi' ⇢DM

M

2
DM

4⇡f�(0)
X

i

m

i

�

i

I

i

(16)

where

I

i

=

Z
R�

0

4⇡r

2
n

i

(r)

"
1

2

✓
E0i

m

i

◆2

� E0i

m

i

e

�2miv
2

�esc

(r)/E
0i

✓
E0i

2m

i

+ v

2
�esc(r)

◆#
dr (17)

In the limit of negligible form factors, E0i � m

i

, the term in square brackets simplifies to
v

4
�esc.

The integrals I
i

are adimensional in natural units, and their values are given in table 1 for
the main capturing elements. Inserting their values we find

�capt '
5.90 · 1026

sec

 
⇢DM

0.3

GeV
cm3

!✓
100GeV

MDM

◆2
 
270

km
sec

v

e↵
0

!3
�SD + 1200 �SI

pb

. (18)

8



Capture Rate

1 10 100 1000 104
1025

1026

1027

1028

1029

1030

DM mass MDM GeV

Ca
pt
ur
e
ra
te
G c
ap
tês p

in
1êse

c*
pb

Spin Independent DM capture rate in the Sun

He

N

O
Ne

Mg

Si

S

Fe

tot

v0 = 250 kmêsec
vesc = 550 kmêsec

k = 1

1 10 100 1000 104
1023

1024

1025

1026

1027

1028

1029

DM mass MDM in GeV

C
ap
tu
re
ra
te
G c
ap
tês p

in
1êse

c*
pb

Spin Dependent DM capture rate in the Sun

tot

N

H

v0 = 250 kmêsec
vesc = 550 kmêsec

k = 1

Figure 1: DM capture rate in the Sun �capt of DM particles with mass MDM assuming a
Spin-Independent (left) or a Spin-Dependent (right) DM cross section on matter. We normalize
assuming a cross section on protons �

p

= 1pb and we adopt the indicated values for the param-
eters of the galactic DM velocity distribution. We show the total as well as the contributions from
the most relevant individual elements in the Sun. The dashed line is the analytical approximation
valid when the DM is much heavier than the nuclei.

2.1 The DM capture rate

As a consequence of the attained equilibrium, the computation of the annihilation rate �ann

crucially depends on the computation of the capture rate �capt, which acts as a bottleneck.
The computation of the latter proceeds by summing the contribution to capture of all the
individual shells of matter located at position r within the massive body. The result is [3]
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Its derivation is lengthy: we will only sketch it in the following by illustrating the individual
pieces of this equation.

• ⇢DM/MDM corresponds just to the local number density of DM particles at the location
of the capturing body.

• The sum runs over all kinds of nuclei i with mass m
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and number density n
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(r), to be
integrated over the volume of the Sun. We take the standard solar elemental abundances
from [13]. The factor �
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is the low-energy DM cross section on nucleus i, assumed to be
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Annihilation signal

• Neutrinos made from DM annihilation or decays of 
annihilation products (long-lived dark mediators?)

• Decay in flight (eg tau) better than decay after stopping (eg 
muon)

• Need to take into account oscillations through Sun, across 
1AU and through Earth

• Use pointing to suppress atmospheric neutrino background
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Figure 4: Final results for the neutrino spectra at pro-

duction, including all effects (in particular ElectroWeak correc-
tions). Left column: neutrino spectra. Central column: antineu-
trino spectra. Right column: zoom on the high energy portion of
the neutrino spectra. Upper row: e flavor; middle row: µ flavor;
bottom row: ⌧ flavor.
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Figure 4: Final results for the neutrino spectra at pro-

duction, including all effects (in particular ElectroWeak correc-
tions). Left column: neutrino spectra. Central column: antineu-
trino spectra. Right column: zoom on the high energy portion of
the neutrino spectra. Upper row: e flavor; middle row: µ flavor;
bottom row: ⌧ flavor.
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elements in the Earth [27],

C⊕ ≃ 1.7 × 105s−1 ρχ
0.3

(vχ
270)

3

(

TeV

mχ

)2
∑

i

fi

(

σNi

SI

10−6pb

)

,

(2)
where the the sum is over the elements O, Si, Mg, S,
Fe and Ni, only 3% of the mass of the Earth is ne-
glected. The DM mass is denoted mχ, ρχ

0.3 and vχ
270

are the DM energy density and velocity in the halo in
units of 0.3 GeV/cm3 and 270 km/s respectively, while
the factor fi accounts for the mass fraction and distri-
bution profile of the element i [27], whose cross section
with DM is denoted σNi

SI . Direct detection experiments
probe SI cross section of DM off proton, σp

SI. To better
than 1%, σN

SI ≈ N4σp
SI for any nucleus of mass number

N . Hence,

C⊕ ≃ 9.6 × 1011s−1 ρχ
0.3

(vχ
270)

3

(

TeV

mχ

)2( σp
SI

10−6pb

)

. (3)

The maximum rate of DM annihilation occurs after
equilibrium is reached and is entirely determined by
the capture rate, Γeq = C/2. For times shorter than
the equilibrium time teq = 1/

√
CA the abundance is

grows linearly with time and the annihilation rate is
Γneq ∼ 1

2AC2t2. With a typical thermal relic annihila-

tion cross section, Ar ≃ 5.3 × 10−49s−1 (mχ/TeV)3/2,
the Earth is far from equilibrium (t⊕ ≪ teq) and not
a good source of DM-neutrinos. However if the observed
electrons/positrons excesses are due to a low-velocity en-
hancement, R, the annihilation cross section can be far
larger than that of the early universe, A⊕ = RAr, bring-
ing the Earth towards equilibrium today. The maxi-
mal enhancement in the rate is Γeq/Γneq ∼ (ArC⊕t2⊕)−1

which can be several orders of magnitude and is obtained
for R ! (ArC⊕t2⊕)−1. The escape velocity at the cen-
ter of the Earth is approximately 15 km s−1 whilst DM
in the halo has a Maxwell-Boltzmann distribution with
v0 = 270 km s−1. The Sommerfeld enhancement grows
as ∼ 1/v although this growth saturates at very low ve-
locities [5], a further increase beyond v = 270 km s−1 may
yield more non-trivial information about the DM sector.
Thus, the enhancement may in fact be even larger than
that for DM in the halo. It will be useful to define the
critical capture rate for the Earth:

Cc
⊕ = 1/Art

2
⊕ ≃ 9.93 × 1013s−1

(

TeV

mχ

)3/2

, (4)

above which the Earth would already have reached equi-
librium. When the capture rate exceeds this critical
value, boosting the annihilation cross section will not re-
sult in an enhanced neutrino flux. Direct searches ex-
periment such as CDMSII put an upper bound [25] on
the SI elastic scattering cross section of 3.5× 10−7pb for
mχ = 1 TeV. Thus, C⊕ " 10−2Cc

⊕ and the Earth is
probably still far from equilibrium.

The capture rate (3) is derived assuming that the DM
velocity distribution as encountered by the earth is Gaus-
sian. However, it is possible that in the solar system it
differs from Gaussian [23, 29], particularly at the low ve-
locities necessary for capture in the Earth and Sun. It is
also possible that the DM abundance differs significantly
from the galactic halo density (see e.g. [23, 29–32] and
Refs. therein). Both direct and indirect detection exper-
iments probe the same nuclear scattering cross section
but they are sensitive to the different parts of the veloc-
ity distribution, high and low velocity respectively. As-
suming a Gaussian distribution allows observations from
direct and indirect experiments to be straightforwardly
correlated. Furthermore, a future signal at direct detec-
tion experiments would directly probe velocity distribu-
tions (through differential energy information) of the DM
particles [26, 33, 34] at ranges of roughly 40-150km s−1.
Of particular importance are the Xe based experiments
which have the lowest threshold, down to approximately
three times the earth escape velocity [34, 35].

DM annihilation into primary neutrinos. The
muon flux at the surface of the Earth is given by:

dΦP
µ

dEµ
=

∫ ∞

Eµ

dEν
dΦν

dEν

[

dσp
ν(Eν , Eµ)

dEµ
ρp + (p → n)

]

× Rµ(Eµ) + (ν → ν̄) , (5)

with ρp,n the number density of protons and neutrons in
the medium, respectively 5/9NAcm−3 and 4/9NAcm−3

for ice, where NA ≃ 6 × 1023 is Avogadro’s number.
dσp,n

ν /dEµ are the weak scattering cross sections of (anti-
) neutrinos on nucleons

dσp,n
ν

dEµ
=

2mpG2
F

π

(

ap,n
ν + bp,n

ν

E2
µ

E2
ν

)

, (6)

where an,p
ν = 0.25, 0.15, bn,p

ν = 0.06, 0.04 and an,p
ν̄ = bp,n

ν ,
bn,p
ν̄ = ap,n

ν [36]. The distance Rµ(Eµ), the muon range,
defines the distance traveled by a muon until its energy
drops below the energy threshold Eth of the detector,
due to losses in the medium. Approximately, Rµ(Eµ) =
1

ρβ log
[

α+βEµ

α+βEth

]

, with ρ the density of the medium (≃
1g cm−3 for ice) and α ≃ 2.0 MeV cm2g−1 and β ≃ 4.2×
10−6cm2g−1 for ice. At IceCube, the energy threshold is
about 50 GeV and for Eµ ∼ TeV, the typical muon range
is a few kilometers, which is longer than the detector
typical size [46]. In addition, the DM being almost at
rest, one has the following monochromatic muon neutrino
flux at the surface of the Earth:

dΦν

dEν
=

Bν̄νΓ

4πR2
⊕

δ(Eν − mχ) , (7)

with Bν̄ν the branching ratio of DM annihilating to neu-
trino pair and R⊕ ≃ 6.4× 103km, the Earth radius. The
resulting muon flux is:

dΦµ

dEµ
=

Bν̄νΓ

4πR2
⊕

[

dσp
ν(mχ, Eµ)

dEµ
ρp + (p → n)

]

× Rµ(Eµ)Θ(mχ − Eµ) + (ν → ν̄). (8)

(not present for asymmetric DM)
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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taking into account all relevant systematic uncertainties, is
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orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.

We gratefully acknowledge support from NSF, DOE,
SNF, Volkswagen Foundation, FCT, Région des Pays de
la Loire, STCSM, DFG, and Weizmann Institute of Sci-
ence. We are grateful to LNGS for hosting and support-
ing XENON.

� Electronic address: rafael.lang@astro.columbia.edu
† Electronic address: marc.schumann@physik.uzh.ch

[1] G. Steigman and M. S. Turner, Nucl. Phys. B253, 375
(1985); G. Jungman, M. Kamionkowski, and K. Griest,
Phys. Rept. 267, 195 (1996).

[2] N. Jarosik et al., Astrophys. J. Suppl. 192, 14 (2011);
K. Nakamura et al. (Particle Data Group), J. Phys. G37,
075021 (2010).

[3] M. W. Goodman and E. Witten, Phys. Rev. D31, 3059
(1985).

[4] J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87
(1996).

[5] Z. Ahmed et al. (CDMS), Science 327, 1619 (2010).
[6] E. Armengaud et al. (EDELWEISS) (2011),

arXiv:1103.4070.
[7] E. Aprile et al. (XENON100), Phys. Rev. Lett. 105,

131302 (2010).
[8] E. Aprile et al. (XENON100) (2011), arXiv:1103.5831.
[9] E. Aprile et al., Phys. Rev. C79, 045807 (2009).

[10] E. Aprile et al. (XENON100) (2011), accepted by PRD,
arXiv:1101.3866.

[11] E. Aprile and T. Doke, Rev. Mod. Phys. 82, 2053 (2010).
[12] G. Plante et al. (2011), submitted to PRD and arXiv.
[13] F. Arneodo et al., Nucl. Instrum. Meth. A449, 147

(2000); D. Akimov et al., Phys. Lett. B524, 245 (2002);
R. Bernabei et al., Eur. Phys. J. direct C3, 11 (2001).
E. Aprile et al., Phys. Rev. D72, 072006 (2005). V. Che-
pel et al., Astropart. Phys. 26, 58 (2006). A. Manzur
et al., Phys. Rev. C81, 025808 (2010).

[14] E. Aprile et al., Phys. Rev. Lett. 97, 081302 (2006).
[15] E. Aprile et al. (XENON100) (2011), arXiv:1103.0303.
[16] S. Yellin, Phys. Rev. D66, 032005 (2002).
[17] O. Buchmueller et al. (2011), arXiv:1102.4585.
[18] C. E. Aalseth et al. (CoGeNT), Phys. Rev. Lett. 106,

131301 (2011).
[19] C. Savage et al., JCAP 0904, 010 (2009).

The same interaction can lead to DM production at 
a hadron machine.

pp̄� nothing,

SI, scalar exchange

SI, vector exchange

SD, axial-vector 
exchange

2

well as missing energy signals associated with invisible decays of the Higgs boson. Where available,
we will use existing LHC data to set limits on the dark matter–quark and dark matter–gluon
couplings in an e⇥ective field theory framework, and we will demonstrate the complementarity of
these limits to those obtained from direct and indirect dark matter searches. We will also compare
several mono-jet analyses that have been carried out by ATLAS and CMS, and we will outline a
strategy for discovering dark matter or improving bounds in the future.

Dark matter searches using mono-jet signatures have been discussed previously in the context
of both Tevatron and LHC searches [1–7], and have been shown to be very competitive with
direct searches, especially at low dark matter mass and for dark matter with spin-dependent
interactions. In a related work, SSC constraints on missing energy signatures due to quark and
lepton compositeness have been discussed in [8]. The mono-photon channel has so far mostly
been considered as a search channel at lepton colliders [9–11], but sensitivity studies exist also
for the LHC [12, 13], and they suggest that mono-photons can provide very good sensitivity to
dark matter production at hadron colliders. Combined analyses of Tevatron mono-jet searches and
LEP mono-photon searches have been presented in [14, 15]. The mono-photon channel su⇥ers from
di⇥erent systematic uncertainties than the mono-jet channel, and probes a di⇥erent set of DM–SM
couplings, it can thus provide an important confirmation in case a signal is observed in mono-jets.

The outline of this paper is as follows: After introducing the e⇥ective field theory formalism
of dark matter interactions in section 2, we will first discuss the mono-jet channel in section 3.
We will describe our analysis procedure and then apply it to ATLAS and CMS data in order to
set limits on the e⇥ective dark matter couplings to quarks and gluons. We also re-interpret these
limits as bounds on the scattering and annihilation cross sections measured at direct and indirect
detection experiments. We then go on, in section 4, to discuss how our limits are modified in
models in which dark matter interactions are mediated by a light . O(few TeV) particle, so that
the e⇥ective field theory formalism is not applicable. In section 5, we will perform an analysis
similar to that from section 3 in the mono-photon channel. A special example of dark matter
coupling through a light mediator is DM interacting through the Standard Model Higgs boson,
and we will argue in section 6 that in this case, invisible Higgs decay channels provide the best
sensitivity. We will summarize and conclude in section 7.

2. AN EFFECTIVE THEORY FOR DARK MATTER INTERACTIONS

If interactions between dark matter and Standard Model particles involve very heavy (&
few TeV) mediator particles—an assumption we are going to make in most of this paper—we
can describe them in the framework of e⇥ective field theory. (We will investigate how departing
from the e⇥ective field theory framework changes our results in sections 4 as well as 6.) Since our
goal is not to do a full survey of all possible e⇥ective operators, but rather to illustrate a wide
variety of phenomenologically distinct cases, we will assume the dark matter to be a Dirac fermion
⇥ and consider the following e⇥ective operators1

OV =
(⇥̄�µ⇥)(q̄�µq)

�2
, (vector, s-channel) (1)

OA =
(⇥̄�µ�5⇥)(q̄�µ�5q)

�2
, (axial vector, s-channel) (2)

Ot =
(⇥̄PRq)(q̄PL⇥)

�2
+ (L � R) , (scalar, t-channel) (3)

1 Other recent studies that have used a similar formalism to describe dark matter interactions include [1–5, 7, 11, 16–
20].

3

Og = �s
(⇤̄⇤) (Ga

µ⇥G
aµ⇥)

�3
. (scalar, s-channel) (4)

In these expressions, ⇤ is the dark matter field, q is a Standard Model quark field, Ga
µ⇥ is the gluon

field strength tensor, and PR(L) = (1±⇥5)/2. Since couplings to leptons cannot be directly probed
in a hadron collider environment, we will not concern ourselves with these in this paper (see [11]
for collider limits on dark matter–electron couplings).

In setting bounds we will turn on operators for up and down quarks separately. The bound
for couplings to any linear combination of quark flavors can be derived from these bounds (see
section 3). The denomination “s-channel” or “t-channel” in equations (1)–(4), refers to the most
straightforward ultraviolet (UV) completions of the respective operators. For instance, OV arises
most naturally if dark matter production in pp collisions proceeds through s-channel exchange of
a new heavy gauge boson, and Ot is most easily obtained if the production process is t-channel
exchange of a heavy scalar. In such a UV completion, � would be given by M/

�
g⇤gq, where M

is the mass of the mediator, g⇤ is its coupling to dark matter and gq is its coupling to Standard
Model quarks. (The gluon operator Og is somewhat special in this respect since the coupling of
a scalar mediator to two gluons is in itself a dimension-5 operator). In supersymmetric theories
the dominant interaction of dark matter with quarks is often induced by squark exchange. For the
case of degenerate left and right handed squarks an operator of the form Ot is predicted (but with
⇤ being a Majorana fermion). Here we have assumed that DM is a Dirac fermion, the case of a
Majorana fermion [7] would not greatly alter our results, except in the case of the vector operator
OV , which vanishes if ⇤ is a Majorana fermion.

Ultimately we wish to compare the collider bounds to direct detection bounds, and when match-
ing quark level operators to nucleon level operators the coupling between the SM and DM must
be of the form OSMO⇤, where OSM involves only Standard Model fields and O⇤ involves only dark
matter, so that the matrix element ⇧N |OSM|N⌃ can be extracted [18]. An operator like Ot, which
is not in this form, can be converted into it by a Fierz transformation. This leads to a sum of
several operators that can all contribute to the interaction. Typically, for direct detection, one of
these operators will dominate, but at colliders there can be considerable interference. For instance,
we can rewrite equation (3) as

1

�2
(⇤̄PRq)(q̄PL⇤) + (L ⇤ R) =

1

4�2
[(⇤̄⇥µ⇤)(q̄⇥µq)� (⇤̄⇥µ⇥5⇤)(q̄⇥µ⇥5q)] =

1

4�2
(OV �OA) . (5)

If ⇤ is a Dirac fermion both the OV and the OA components contribute to ⇤ production at colliders,
but in direct detection experiments, the spin-independent interaction induced by OV dominates
over the spin-dependent interaction due to OA. For Majorana dark matter, of course, OV would
vanish in all cases.

3. MONO-JETS AT THE LHC

In this section we will derive bounds on dark matter operators with mono-jet searches. In the
following subsection we will compare the reach of several mono-jet searches, a low luminosity (36
pb�1) CMS search and three ATLAS searches with varying jet pT cuts using 1 fb�1 of data.2 For
simplicity we will make this comparison only for the vector operator OV , with dark matter coupling
only to up quarks. We will find that the highest jet pT cuts are most e⇥ective in setting bounds
on this dark matter interaction. In the next subsection we will proceed to use the analysis based
on these highest jet-pT cuts to set bounds on all e⇥ective operators discussed in section 2.

2 As we were completing this manuscript, CMS has also updated its mono-jet analysis using 1.1 fb�1 of data [21].

SI, scalar exchange
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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well as missing energy signals associated with invisible decays of the Higgs boson. Where available,
we will use existing LHC data to set limits on the dark matter–quark and dark matter–gluon
couplings in an e⇥ective field theory framework, and we will demonstrate the complementarity of
these limits to those obtained from direct and indirect dark matter searches. We will also compare
several mono-jet analyses that have been carried out by ATLAS and CMS, and we will outline a
strategy for discovering dark matter or improving bounds in the future.

Dark matter searches using mono-jet signatures have been discussed previously in the context
of both Tevatron and LHC searches [1–7], and have been shown to be very competitive with
direct searches, especially at low dark matter mass and for dark matter with spin-dependent
interactions. In a related work, SSC constraints on missing energy signatures due to quark and
lepton compositeness have been discussed in [8]. The mono-photon channel has so far mostly
been considered as a search channel at lepton colliders [9–11], but sensitivity studies exist also
for the LHC [12, 13], and they suggest that mono-photons can provide very good sensitivity to
dark matter production at hadron colliders. Combined analyses of Tevatron mono-jet searches and
LEP mono-photon searches have been presented in [14, 15]. The mono-photon channel su⇥ers from
di⇥erent systematic uncertainties than the mono-jet channel, and probes a di⇥erent set of DM–SM
couplings, it can thus provide an important confirmation in case a signal is observed in mono-jets.

The outline of this paper is as follows: After introducing the e⇥ective field theory formalism
of dark matter interactions in section 2, we will first discuss the mono-jet channel in section 3.
We will describe our analysis procedure and then apply it to ATLAS and CMS data in order to
set limits on the e⇥ective dark matter couplings to quarks and gluons. We also re-interpret these
limits as bounds on the scattering and annihilation cross sections measured at direct and indirect
detection experiments. We then go on, in section 4, to discuss how our limits are modified in
models in which dark matter interactions are mediated by a light . O(few TeV) particle, so that
the e⇥ective field theory formalism is not applicable. In section 5, we will perform an analysis
similar to that from section 3 in the mono-photon channel. A special example of dark matter
coupling through a light mediator is DM interacting through the Standard Model Higgs boson,
and we will argue in section 6 that in this case, invisible Higgs decay channels provide the best
sensitivity. We will summarize and conclude in section 7.

2. AN EFFECTIVE THEORY FOR DARK MATTER INTERACTIONS

If interactions between dark matter and Standard Model particles involve very heavy (&
few TeV) mediator particles—an assumption we are going to make in most of this paper—we
can describe them in the framework of e⇥ective field theory. (We will investigate how departing
from the e⇥ective field theory framework changes our results in sections 4 as well as 6.) Since our
goal is not to do a full survey of all possible e⇥ective operators, but rather to illustrate a wide
variety of phenomenologically distinct cases, we will assume the dark matter to be a Dirac fermion
⇥ and consider the following e⇥ective operators1

OV =
(⇥̄�µ⇥)(q̄�µq)

�2
, (vector, s-channel) (1)

OA =
(⇥̄�µ�5⇥)(q̄�µ�5q)

�2
, (axial vector, s-channel) (2)

Ot =
(⇥̄PRq)(q̄PL⇥)

�2
+ (L � R) , (scalar, t-channel) (3)

1 Other recent studies that have used a similar formalism to describe dark matter interactions include [1–5, 7, 11, 16–
20].

3

Og = �s
(⇤̄⇤) (Ga

µ⇥G
aµ⇥)

�3
. (scalar, s-channel) (4)

In these expressions, ⇤ is the dark matter field, q is a Standard Model quark field, Ga
µ⇥ is the gluon

field strength tensor, and PR(L) = (1±⇥5)/2. Since couplings to leptons cannot be directly probed
in a hadron collider environment, we will not concern ourselves with these in this paper (see [11]
for collider limits on dark matter–electron couplings).

In setting bounds we will turn on operators for up and down quarks separately. The bound
for couplings to any linear combination of quark flavors can be derived from these bounds (see
section 3). The denomination “s-channel” or “t-channel” in equations (1)–(4), refers to the most
straightforward ultraviolet (UV) completions of the respective operators. For instance, OV arises
most naturally if dark matter production in pp collisions proceeds through s-channel exchange of
a new heavy gauge boson, and Ot is most easily obtained if the production process is t-channel
exchange of a heavy scalar. In such a UV completion, � would be given by M/

�
g⇤gq, where M

is the mass of the mediator, g⇤ is its coupling to dark matter and gq is its coupling to Standard
Model quarks. (The gluon operator Og is somewhat special in this respect since the coupling of
a scalar mediator to two gluons is in itself a dimension-5 operator). In supersymmetric theories
the dominant interaction of dark matter with quarks is often induced by squark exchange. For the
case of degenerate left and right handed squarks an operator of the form Ot is predicted (but with
⇤ being a Majorana fermion). Here we have assumed that DM is a Dirac fermion, the case of a
Majorana fermion [7] would not greatly alter our results, except in the case of the vector operator
OV , which vanishes if ⇤ is a Majorana fermion.

Ultimately we wish to compare the collider bounds to direct detection bounds, and when match-
ing quark level operators to nucleon level operators the coupling between the SM and DM must
be of the form OSMO⇤, where OSM involves only Standard Model fields and O⇤ involves only dark
matter, so that the matrix element ⇧N |OSM|N⌃ can be extracted [18]. An operator like Ot, which
is not in this form, can be converted into it by a Fierz transformation. This leads to a sum of
several operators that can all contribute to the interaction. Typically, for direct detection, one of
these operators will dominate, but at colliders there can be considerable interference. For instance,
we can rewrite equation (3) as

1

�2
(⇤̄PRq)(q̄PL⇤) + (L ⇤ R) =

1

4�2
[(⇤̄⇥µ⇤)(q̄⇥µq)� (⇤̄⇥µ⇥5⇤)(q̄⇥µ⇥5q)] =

1

4�2
(OV �OA) . (5)

If ⇤ is a Dirac fermion both the OV and the OA components contribute to ⇤ production at colliders,
but in direct detection experiments, the spin-independent interaction induced by OV dominates
over the spin-dependent interaction due to OA. For Majorana dark matter, of course, OV would
vanish in all cases.

3. MONO-JETS AT THE LHC

In this section we will derive bounds on dark matter operators with mono-jet searches. In the
following subsection we will compare the reach of several mono-jet searches, a low luminosity (36
pb�1) CMS search and three ATLAS searches with varying jet pT cuts using 1 fb�1 of data.2 For
simplicity we will make this comparison only for the vector operator OV , with dark matter coupling
only to up quarks. We will find that the highest jet pT cuts are most e⇥ective in setting bounds
on this dark matter interaction. In the next subsection we will proceed to use the analysis based
on these highest jet-pT cuts to set bounds on all e⇥ective operators discussed in section 2.

2 As we were completing this manuscript, CMS has also updated its mono-jet analysis using 1.1 fb�1 of data [21].

SI, scalar exchange
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FIG. 5: Spin-independent elastic WIMP-nucleon cross-section
� as function of WIMP mass m�. The new XENON100 limit
at 90% CL, as derived with the Profile Likelihood method
taking into account all relevant systematic uncertainties, is
shown as the thick (blue) line together with the 1� and 2�
sensitivity of this run (shaded blue band). The limits from
XENON100 (2010) [7] (thin, black), EDELWEISS [6] (dotted,
orange), and CDMS [5] (dashed, orange, recalculated with
vesc = 544 km/s, v0 = 220 km/s) are also shown. Expecta-
tions from CMSSM are indicated at 68% and 95% CL (shaded
gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].

and a density of �� = 0.3GeV/cm3. The S1 energy res-
olution, governed by Poisson fluctuations, is taken into
account. Uncertainties in the energy scale as indicated in
Fig. 1 as well as uncertainties in vesc are profiled out and
incorporated into the limit. The resulting 90% confidence
level (CL) limit is shown in Fig. 5 and has a minimum
⇥ = 7.0�10�45 cm2 at aWIMPmass ofm� = 50GeV/c2.
The impact of Le� data below 3 keVnr is negligible at
m� = 10GeV/c2. The sensitivity is the expected limit in
absence of a signal above background and is also shown
in Fig. 5 as 1⇥ and 2⇥ region. Due to the presence of
two events around 30 keVnr, the limit at higher m� is
weaker than expected. This limit is consistent with the
one from the standard analysis, which calculates the limit
based only on events in the WIMP search region with an
acceptance-corrected exposure, weighted with the spec-
trum of a m� = 100GeV/c2 WIMP, of 1471 kg� days.
This result excludes a large fraction of previously unex-

plored WIMP parameter space, and cuts into the region
where supersymmetric WIMP dark matter is accessible
by the LHC [17]. Moreover, the new result challenges
the interpretation of the DAMA [19] and CoGeNT [18]
results as being due to light mass WIMPs.
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gray) [17], as well as the 90% CL areas favored by CoGeNT
(green) [18] and DAMA (light red, without channeling) [19].
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weaker than expected. This limit is consistent with the
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well as missing energy signals associated with invisible decays of the Higgs boson. Where available,
we will use existing LHC data to set limits on the dark matter–quark and dark matter–gluon
couplings in an e⇥ective field theory framework, and we will demonstrate the complementarity of
these limits to those obtained from direct and indirect dark matter searches. We will also compare
several mono-jet analyses that have been carried out by ATLAS and CMS, and we will outline a
strategy for discovering dark matter or improving bounds in the future.

Dark matter searches using mono-jet signatures have been discussed previously in the context
of both Tevatron and LHC searches [1–7], and have been shown to be very competitive with
direct searches, especially at low dark matter mass and for dark matter with spin-dependent
interactions. In a related work, SSC constraints on missing energy signatures due to quark and
lepton compositeness have been discussed in [8]. The mono-photon channel has so far mostly
been considered as a search channel at lepton colliders [9–11], but sensitivity studies exist also
for the LHC [12, 13], and they suggest that mono-photons can provide very good sensitivity to
dark matter production at hadron colliders. Combined analyses of Tevatron mono-jet searches and
LEP mono-photon searches have been presented in [14, 15]. The mono-photon channel su⇥ers from
di⇥erent systematic uncertainties than the mono-jet channel, and probes a di⇥erent set of DM–SM
couplings, it can thus provide an important confirmation in case a signal is observed in mono-jets.

The outline of this paper is as follows: After introducing the e⇥ective field theory formalism
of dark matter interactions in section 2, we will first discuss the mono-jet channel in section 3.
We will describe our analysis procedure and then apply it to ATLAS and CMS data in order to
set limits on the e⇥ective dark matter couplings to quarks and gluons. We also re-interpret these
limits as bounds on the scattering and annihilation cross sections measured at direct and indirect
detection experiments. We then go on, in section 4, to discuss how our limits are modified in
models in which dark matter interactions are mediated by a light . O(few TeV) particle, so that
the e⇥ective field theory formalism is not applicable. In section 5, we will perform an analysis
similar to that from section 3 in the mono-photon channel. A special example of dark matter
coupling through a light mediator is DM interacting through the Standard Model Higgs boson,
and we will argue in section 6 that in this case, invisible Higgs decay channels provide the best
sensitivity. We will summarize and conclude in section 7.

2. AN EFFECTIVE THEORY FOR DARK MATTER INTERACTIONS

If interactions between dark matter and Standard Model particles involve very heavy (&
few TeV) mediator particles—an assumption we are going to make in most of this paper—we
can describe them in the framework of e⇥ective field theory. (We will investigate how departing
from the e⇥ective field theory framework changes our results in sections 4 as well as 6.) Since our
goal is not to do a full survey of all possible e⇥ective operators, but rather to illustrate a wide
variety of phenomenologically distinct cases, we will assume the dark matter to be a Dirac fermion
⇥ and consider the following e⇥ective operators1

OV =
(⇥̄�µ⇥)(q̄�µq)

�2
, (vector, s-channel) (1)

OA =
(⇥̄�µ�5⇥)(q̄�µ�5q)

�2
, (axial vector, s-channel) (2)

Ot =
(⇥̄PRq)(q̄PL⇥)

�2
+ (L � R) , (scalar, t-channel) (3)

1 Other recent studies that have used a similar formalism to describe dark matter interactions include [1–5, 7, 11, 16–
20].

3

Og = �s
(⇤̄⇤) (Ga

µ⇥G
aµ⇥)

�3
. (scalar, s-channel) (4)

In these expressions, ⇤ is the dark matter field, q is a Standard Model quark field, Ga
µ⇥ is the gluon

field strength tensor, and PR(L) = (1±⇥5)/2. Since couplings to leptons cannot be directly probed
in a hadron collider environment, we will not concern ourselves with these in this paper (see [11]
for collider limits on dark matter–electron couplings).

In setting bounds we will turn on operators for up and down quarks separately. The bound
for couplings to any linear combination of quark flavors can be derived from these bounds (see
section 3). The denomination “s-channel” or “t-channel” in equations (1)–(4), refers to the most
straightforward ultraviolet (UV) completions of the respective operators. For instance, OV arises
most naturally if dark matter production in pp collisions proceeds through s-channel exchange of
a new heavy gauge boson, and Ot is most easily obtained if the production process is t-channel
exchange of a heavy scalar. In such a UV completion, � would be given by M/

�
g⇤gq, where M

is the mass of the mediator, g⇤ is its coupling to dark matter and gq is its coupling to Standard
Model quarks. (The gluon operator Og is somewhat special in this respect since the coupling of
a scalar mediator to two gluons is in itself a dimension-5 operator). In supersymmetric theories
the dominant interaction of dark matter with quarks is often induced by squark exchange. For the
case of degenerate left and right handed squarks an operator of the form Ot is predicted (but with
⇤ being a Majorana fermion). Here we have assumed that DM is a Dirac fermion, the case of a
Majorana fermion [7] would not greatly alter our results, except in the case of the vector operator
OV , which vanishes if ⇤ is a Majorana fermion.

Ultimately we wish to compare the collider bounds to direct detection bounds, and when match-
ing quark level operators to nucleon level operators the coupling between the SM and DM must
be of the form OSMO⇤, where OSM involves only Standard Model fields and O⇤ involves only dark
matter, so that the matrix element ⇧N |OSM|N⌃ can be extracted [18]. An operator like Ot, which
is not in this form, can be converted into it by a Fierz transformation. This leads to a sum of
several operators that can all contribute to the interaction. Typically, for direct detection, one of
these operators will dominate, but at colliders there can be considerable interference. For instance,
we can rewrite equation (3) as

1

�2
(⇤̄PRq)(q̄PL⇤) + (L ⇤ R) =

1

4�2
[(⇤̄⇥µ⇤)(q̄⇥µq)� (⇤̄⇥µ⇥5⇤)(q̄⇥µ⇥5q)] =

1

4�2
(OV �OA) . (5)

If ⇤ is a Dirac fermion both the OV and the OA components contribute to ⇤ production at colliders,
but in direct detection experiments, the spin-independent interaction induced by OV dominates
over the spin-dependent interaction due to OA. For Majorana dark matter, of course, OV would
vanish in all cases.

3. MONO-JETS AT THE LHC

In this section we will derive bounds on dark matter operators with mono-jet searches. In the
following subsection we will compare the reach of several mono-jet searches, a low luminosity (36
pb�1) CMS search and three ATLAS searches with varying jet pT cuts using 1 fb�1 of data.2 For
simplicity we will make this comparison only for the vector operator OV , with dark matter coupling
only to up quarks. We will find that the highest jet pT cuts are most e⇥ective in setting bounds
on this dark matter interaction. In the next subsection we will proceed to use the analysis based
on these highest jet-pT cuts to set bounds on all e⇥ective operators discussed in section 2.

2 As we were completing this manuscript, CMS has also updated its mono-jet analysis using 1.1 fb�1 of data [21].

SI, scalar exchange
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Figure 3: Missing transverse energy Emiss
T after all selections for data and SM backgrounds. The

processes contributing to the SM background are from simulation, normalised to the estimation
from data using the Emiss

T threshold of 500 GeV. The shaded bands in the lower panel represent
the statistical uncertainty. Overflow events are included in the last bin.

ciency of the selection, which has the additional requirement that there be at least one isolated
muon in the event, is also estimated from simulation. It is corrected to account for differences
in the measured muon reconstruction efficiencies in data and simulation. The uncertainty in
the Z(nn) prediction includes both statistical and systematic components. The sources of un-
certainty are: (1) the statistical uncertainty in the numbers of Z(µµ) events in the data, (2)
uncertainty due to backgrounds, (3) uncertainties in the acceptance associated with the PDFs
and the size of the simulation samples, (4) the uncertainty in the selection efficiency as deter-
mined from the difference in measured efficiencies in data and simulation and the size of the
simulation samples, and (5) the theoretical uncertainty on the ratio of branching fractions [49].
The dominant source of uncertainty in the high Emiss

T regions is the statistical uncertainty in the
number of Z(µµ) events, which is 11% for Emiss

T > 500 GeV. Table 1 summarizes the statistical
and systematic uncertainties.

Table 1: Summary of the statistical and systematic contributions to the total uncertainty on the
Z(nn) background.

Emiss
T (GeV) ! >250 >300 >350 >400 >450 >500 >550

(1) Z(µµ)+jets statistical unc. 1.7 2.7 4.0 5.6 7.8 11 16
(2) Background 1.4 1.7 2.1 2.4 2.7 3.2 3.9
(3) Acceptance 2.0 2.1 2.1 2.2 2.3 2.6 2.8
(4) Selection efficiency 2.1 2.2 2.2 2.4 2.7 3.1 3.7
(5) RBF 2.0 2.0 2.0 2.0 2.0 2.0 2.0
Total uncertainty (%) 5.1 5.6 6.6 7.9 9.9 13 18

The second-largest background arises from W+jets events that are not rejected by the lepton
veto. This can occur when a lepton (electron or muon) from the W decays (prompt or via
leptonic tau decay) fails the identification, isolation or acceptance requirements, or a hadronic
tau decay is not identified. The contributions to the signal region from these events are es-
timated from the W(µn)+jets control sample in data. This sample is selected by applying
the full signal selection, except the muon veto, and instead requiring an isolated muon with

Monojet
CMS-EXO-12-048

Mono-Jet
Assume the EFT is valid at the LHC.

Consider contact operator involving u or d.

The signal spectrum is harder than backgrounds.

dominant background: 
Z plus jet (     initial state).

q

q̄

j
�̄

�

q

g
j

⌫
⌫̄Z

dominant signal: 
    initial state.qg qq̄

Z is typically emitted forward,
with low pT . DM system emitted isotropically.

Mono-Jet
Assume the EFT is valid at the LHC.

Consider contact operator involving u or d.

The signal spectrum is harder than backgrounds.

dominant background: 
Z plus jet (     initial state).

q

q̄

j
�̄

�

q

g
j

⌫
⌫̄Z

dominant signal: 
    initial state.qg qq̄

Z is typically emitted forward,
with low pT . DM system emitted isotropically.

Signal:

(Dominant) 
Backgrounds:

Mono-Jet
Assume the EFT is valid at the LHC.

Consider contact operator involving u or d.

The signal spectrum is harder than backgrounds.

dominant background: 
Z plus jet (     initial state).

q

q̄

j
�̄

�

q

g
j

⌫
⌫̄Z

dominant signal: 
    initial state.qg qq̄

Z is typically emitted forward,
with low pT . DM system emitted isotropically.

W `



 [GeV]miss
TE

150 200 250 300 350 400 450 500

Ev
en

ts
 / 

G
eV

-310

-210

-110

1

10

210
 = 7 TeV)sData 2011 (

γ)+νν→Z(
γW/Z+

W/Z+jet
+jet, multi-jet, dibosonγtop, 

Total background
=1.0 TeVDADD, n=2, M
=10 GeV, M =400 GeV
χ

WIMP, D5, m
*

-1L dt = 4.6 fb∫

ATLAS Preliminary

 [GeV]miss
TE

150 200 250 300 350 400 450 500

Ev
en

ts
 / 

G
eV

-310

-210

-110

1

10

210

Figure 1: The measured EmissT distribution (black dots) compared to the SM (solid lines), SM+ADD LED (dashed
lines), and SM+WIMP (dotted lines) predictions, for two particular ADD LED and WIMP scenarios. The back-
ground contributions fromW/Z+jets, γ+jets, and multi-jet processes are taken from theMC simulations normalized
to the data-driven estimations, as discussed in the text. For data only statistical uncertainties are included. The
band around the total background prediction includes uncertainties on the data-driven background estimates and
statistical uncertainties on the MC samples.

interactions is driven by the results from collider experiments with the assumption of the validity of the
effective theory. The upper limits presented in this note improve upon CDF results at the Tevatron [4] and
are similar to those obtained by the CMS experiment [6] which uses axial-vector operators to describe
spin-dependent interactions.

8 Conclusion

In summary, we report results on the search for new phenomena in events with an energetic photon and
large missing transverse momentum in proton-proton collisions at

√
s = 7 TeV, based on ATLAS data

corresponding to an integrated luminosity of 4.6 fb−1. The measurements are in agreement with the SM
predictions for background. The results are translated into model-independent 90% and 95% confidence
level upper limits on σ × A × ϵ of 5.6 fb and 6.8 fb, respectively. The results are presented in terms
of new improved limits on MD versus the number of extra spatial dimensions in the ADD LED model
and upper limits on the spin-independent and spin-dependent contributions to the nucleon-WIMP elastic
cross section as a function of the WIMP mass.
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Table 10: ADD Model observed and expected limits on MD in TeV/c2 as a function of d at LO
and NLO, with K-factors of 1.5 for d = 2,3 and 1.4 for d = 4,5,6.

LO NLO
d Exp. Limit Obs. Limit Exp. Limit Obs. Limit
2 5.12 5.10 5.70 5.67
3 3.96 3.94 4.31 4.29
4 3.46 3.44 3.72 3.71
5 3.11 3.10 3.32 3.31
6 2.95 2.94 3.13 3.12

The limits on L as a function of the DM mass for the vector interaction and the axial-vector
interaction are shown in Figure 6, together with a comparison with limits from the previous
CMS analysis using 5 fb�1 at 7 TeV. The observed and expected limits at the 90% CL on the
DM-nucleon scattering cross section for the vector, axial-vector and scalar operators are shown
in Tables 11, 12, 13 and Figures 7 and 8.

Also considered is the case in which the mediator is light enough to be accessible to the LHC.
Figure 9 shows the observed limits on L as a function of the mass of the mediator, assuming
vector interactions and a dark matter mass of 50 GeV/c2 and 500 GeV/c2. The width (G) of the
mediator is varied between M/3 and M/8p [13]. It shows the resonant enhancement in the
production cross section once the mass of the mediator is within the kinematic range and can
be produced on-shell. At large mediator mass, the limits on L approximate to those obtained
in the effective theory framework [13].
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Figure 6: Limits on the contact interaction scale L as a function of the DM mass for the current
analysis using 19.5 fb�1 of 8 TeV data. Also shown is the result from the previous analysis
using 5 fb�1 of 7 TeV data.

The results can also be interpreted in the context of Unparticle production. Shown in Figure 10
are the expected and observed 95% C.L limits on the cross-sections for S = 0 Unparticles with
dU = 1.5, 1.6, 1.7, 1.8 and 1.9 as a function of LU for a fixed coupling constant l = 1. The
observed 95% C.L limit LU for these values of dU is shown in Table 14. This can be compared

Vector coupling

2

well as missing energy signals associated with invisible decays of the Higgs boson. Where available,
we will use existing LHC data to set limits on the dark matter–quark and dark matter–gluon
couplings in an e⇥ective field theory framework, and we will demonstrate the complementarity of
these limits to those obtained from direct and indirect dark matter searches. We will also compare
several mono-jet analyses that have been carried out by ATLAS and CMS, and we will outline a
strategy for discovering dark matter or improving bounds in the future.

Dark matter searches using mono-jet signatures have been discussed previously in the context
of both Tevatron and LHC searches [1–7], and have been shown to be very competitive with
direct searches, especially at low dark matter mass and for dark matter with spin-dependent
interactions. In a related work, SSC constraints on missing energy signatures due to quark and
lepton compositeness have been discussed in [8]. The mono-photon channel has so far mostly
been considered as a search channel at lepton colliders [9–11], but sensitivity studies exist also
for the LHC [12, 13], and they suggest that mono-photons can provide very good sensitivity to
dark matter production at hadron colliders. Combined analyses of Tevatron mono-jet searches and
LEP mono-photon searches have been presented in [14, 15]. The mono-photon channel su⇥ers from
di⇥erent systematic uncertainties than the mono-jet channel, and probes a di⇥erent set of DM–SM
couplings, it can thus provide an important confirmation in case a signal is observed in mono-jets.

The outline of this paper is as follows: After introducing the e⇥ective field theory formalism
of dark matter interactions in section 2, we will first discuss the mono-jet channel in section 3.
We will describe our analysis procedure and then apply it to ATLAS and CMS data in order to
set limits on the e⇥ective dark matter couplings to quarks and gluons. We also re-interpret these
limits as bounds on the scattering and annihilation cross sections measured at direct and indirect
detection experiments. We then go on, in section 4, to discuss how our limits are modified in
models in which dark matter interactions are mediated by a light . O(few TeV) particle, so that
the e⇥ective field theory formalism is not applicable. In section 5, we will perform an analysis
similar to that from section 3 in the mono-photon channel. A special example of dark matter
coupling through a light mediator is DM interacting through the Standard Model Higgs boson,
and we will argue in section 6 that in this case, invisible Higgs decay channels provide the best
sensitivity. We will summarize and conclude in section 7.

2. AN EFFECTIVE THEORY FOR DARK MATTER INTERACTIONS

If interactions between dark matter and Standard Model particles involve very heavy (&
few TeV) mediator particles—an assumption we are going to make in most of this paper—we
can describe them in the framework of e⇥ective field theory. (We will investigate how departing
from the e⇥ective field theory framework changes our results in sections 4 as well as 6.) Since our
goal is not to do a full survey of all possible e⇥ective operators, but rather to illustrate a wide
variety of phenomenologically distinct cases, we will assume the dark matter to be a Dirac fermion
⇥ and consider the following e⇥ective operators1

OV =
(⇥̄�µ⇥)(q̄�µq)

�2
, (vector, s-channel) (1)

OA =
(⇥̄�µ�5⇥)(q̄�µ�5q)

�2
, (axial vector, s-channel) (2)

Ot =
(⇥̄PRq)(q̄PL⇥)

�2
+ (L � R) , (scalar, t-channel) (3)

1 Other recent studies that have used a similar formalism to describe dark matter interactions include [1–5, 7, 11, 16–
20].
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constraints are an improvement over previous results.
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Light Mediators
For all but the lightest mediators EFT is good for direct detection

12

can enhance the production cross section once the mass of the s-channel mediator is within the
kinematic range and can be produced on-shell. This enhancement is particularly strong when the
mediator has a small decay width �, though it should be noted that within our assumptions � is
bounded from below due to the open decay channels to jets and to dark matter.

On the other hand, colliders have a relative disadvantage compared to direct detection experi-
ments in the light mediator case. The reason is that, from dimensional analysis, the cross section
for the collider production process pp ⇧ ⌅̄⌅+X scales as,

⇤(pp ⇧ ⌅̄⌅+X) ⇤
g2qg

2
�

(q2 �M2)2 + �2/4
E2 , (12)

where E is of order the partonic center-of-mass energy, M is the mass of the s-channel mediator
and q is the four momentum flowing through this mediator. At the 7 TeV LHC,

�
q2 has a broad

distribution which is peaked at a few hundred GeV and falls slowly above. The mediator’s width
is denoted by �, and gq, g� are its couplings to quarks and dark matter, respectively. The direct
detection cross section, on the other hand, is approximately

⇤(⌅N ⇧ ⌅N) ⇤
g2qg

2
�

M4
µ2
�N , (13)

with the reduced mass µ�N of the dark matter and the target nucleus.
When M2 ⌅ q2, the limit that the collider sets on g2�g

2
q becomes independent of M , whereas

the limit on g2�g
2
q from direct detection experiments continues to become stronger for smaller M .

In other words, the collider limit on ⇤(⌅N ⇧ ⌅N) becomes weaker as M becomes smaller. On
the other hand, when m� < M/2 and the condition

�
q2 ⌃ M can be fulfilled, collider production

of ⌅̄⌅+X experiences resonant enhancement. Improved constraints on ⇥ can be expected in that
regime.

In figure 7, we investigate the dependence of the ATLAS bounds on the mediator mass M more
quantitatively including both on-shell and o⇤-shell production. Even though dark matter–quark
interactions can now no longer be described by e⇤ective field theory in a collider environment, we
still use ⇥ ⇥ M/

⌥
g�gq as a measure for the strength of the collider constraint, since ⇥ is the

quantity that determines the direct detection cross section. As before, we have used the cuts from
the ATLAS veryHighPt analysis (see section 3). We have assumed vector interactions with equal
couplings of the intermediate vector boson to all quark flavors.

At very large M (& 5 TeV), the limits on ⇥ in figure 7 asymptote to those obtained in the
e⇤ective theory framework. For 2m� ⌅ M . 5 TeV, resonant enhancement leads to a significant
improvement in the limit since the mediator can now be produced on-shell, so that the primary
parton–parton collision now leads to a two-body rather than three-body final state. As expected
from equation (12), the strongest enhancement occurs when the mediator is narrow. In figure 7,
this is illustrated by the upper end of the colored bands, which corresponds to � = M/8⇥.6 The
shape of the peaks in figure 7 is determined by the interplay of parton distribution functions, which
suppress the direct production of a heavy mediator, and the explicit proportionality of ⇥ to M
according to its definition. Below M ⌃ 2m�, the mediator can no longer decay to ⌅̄⌅, but only to
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In that regime, the limit on ⇥ is rather weak (even though the limit on g2�g

2
q is independent of M

there as discussed above), and the dependence on � disappears.

6 � = M/8� corresponds to a mediator that can annihilate into only one quark flavor and helicity and has couplings
g�gq = 1. Since in figure 7, we have assumed couplings to all quark helicities and flavors (collider production
is dominated by coupling to up-quarks though), and since g�gq > 1 in parts of the plot (see dashed contours),
� = M/8� should be regarded as a lower limit on the mediator width.

What fraction of collider events have momentum transfers 
sufficient to probe the UV completion? 
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Figure 1: Dark matter production in association with a single jet in a hadron collider.

3.1. Comparing Various Mono-Jet Analyses

Dark matter pair production through a diagram like figure 1 is one of the leading channels
for dark matter searches at hadron colliders [3, 4]. The signal would manifest itself as an excess
of jets plus missing energy (j + /ET ) events over the Standard Model background, which consists
mainly of (Z � ⇤⇤)+ j and (W � �inv⇤)+ j final states. In the latter case the charged lepton � is
lost, as indicated by the superscript “inv”. Experimental studies of j + /ET final states have been
performed by CDF [22], CMS [23] and ATLAS [24, 25], mostly in the context of Extra Dimensions.

Our analysis will, for the most part, be based on the ATLAS search [25] which looked for mono-
jets in 1 fb�1 of data, although we will also compare to the earlier CMS analysis [23], which used
36 pb�1 of integrated luminosity. The ATLAS search contains three separate analyses based on
successively harder pT cuts, the major selection criteria from each analysis that we apply in our
analysis are given below.3

LowPT Selection requires /ET > 120 GeV, one jet with pT (j1) > 120 GeV, |�(j1)| < 2, and events
are vetoed if they contain a second jet with pT (j2) > 30 GeV and |�(j2)| < 4.5.

HighPT Selection requires /ET > 220 GeV, one jet with pT (j1) > 250 GeV, |�(j1)| < 2, and events
are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV or
�⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

veryHighPT Selection requires /ET > 300 GeV, one jet with pT (j1) > 350 GeV, |�(j1)| < 2, and
events are vetoed if there is a second jet with |�(j2)| < 4.5 and with either pT (j2) > 60 GeV
or �⌅(j2, /ET ) < 0.5. Any further jets with |�(j2)| < 4.5 must have pT (j3) < 30 GeV.

In all cases events are vetoed if they contain any hard leptons, defined for electrons as |�(e)| < 2.47
and pT (e) > 20 GeV and for muons as |�(µ)| < 2.4 and pT (µ) > 10 GeV.

The cuts used by CMS are similar to those of the LowPT ATLAS analysis. Mono-jet events
are selected by requiring /ET > 150 GeV and one jet with pT (j1) > 110 GeV and pseudo-rapidity
|�(j1)| < 2.4. A second jet with pT (j2) > 30 GeV is allowed if the azimuthal angle it forms with
the leading jet is �⌅(j1, j2) < 2.0 radians. Events with more than two jets with pT > 30 GeV are
vetoed, as are events containing charged leptons with pT > 10 GeV. The number of expected and
observed events in the various searches is shown in table I.

3 Both ATLAS and CMS impose additional isolation cuts, which we do not mimic in our analysis for simplicity and
since they would not have a large impact on our results.
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ATLAS dijet resonance search, ATLAS monojet search with VeryHighPT cut and CDF dijet search,
respectively. The red, green, blue, pink and black are for gD/gZ0 = 1, 3, 5, 10, 20, respectively. The
mass of DM is assumed to be 5 GeV.

68], we calculate the ⇧2 which defined as

⇧2 =
�

i

(⌅̄new
i + ⌅̄QCD

i � ⌅̄exp
i )2

⇥2exp + ⇥2QCD

, (4.1)

where ⌅̄new
i , ⌅̄QCD

i and ⌅̄exp
i are the new contributions, QCD background and experimental

value in the i-th bin for certain Mjj group, respectively. ⇥exp and ⇥QCD are the uncertainties

of experimental values and QCD background. To get 95% C.L. constraint on gZ0 for certain

values of gD and MZ0 , we require that in each mjj group the possibility to get calculated ⇧2

should be smaller than 0.05. The constraints on gZ0 from CMS and D0 are shown in Fig. 9,

where the red and green curves are for D0 and CMS respectively; and the corresponding

constraints on direct detection cross sections are shown in Fig. 7.

Since Tevatron is a pp̄ collider, the main background is from qq̄ ⌅ jj and gg ⌅ jj. The

dominant contribution to the signal is from qq̄ ⌅ Z � ⌅ qq̄, where Z � can be either on or

o⇥ shell. gg ⌅ gg provides dominant background in the energy region of
⌃
ŝ < 300 GeV.

However, it drops steeply at
⌃
ŝ ⇧ 500 GeV, where qq̄ ⌅ jj becomes dominant with a much

smaller rate. At the same time, Z � with MZ0 ⇥ 500 GeV can still be produced on-shell.

Therefore, we see from red curve in Fig. 9 that the constraint gets stronger at around 500

to 800 GeV. For larger MZ0 , Z � on-shell production is strongly suppressed by the steeply

falling PDF. As a result, the constraint on the coupling gets weaker and eventually reaches

the limit of the contact interaction, which is illustrated by the plateau of the red dashed

curve in Fig. 7. The height of the plateau can be interpreted as � ⇤ 2 TeV for a quark

composite operator (2⇤/�2)(q̄�µq)2 which agrees with the result from the compositeness

search at D0 [66].

At the LHC, the major background comes from gg ⌅ jj and qq ⌅ jj. The signal contains

two contributions which are shown in Fig. 10, where (a) is an 1/NC suppressed interference
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Figure 3: Left: Two examples of one-loop diagrams with an exchange of a �/a mediator that provide the dominant
contribution to a mono-jet signature. Right: A tree-level graph that leads to a /ET + tt̄ signal.

3.1.1. LHC Searches

Under the assumption of MFV, supplemented by gv = gu = gd = g`, the most relevant couplings
between DM and the SM arising from (11) and (12) are those that involve top quarks. Two main
strategies have been exploited to search for scalar and pseudoscalar interactions of this type using
LHC data. The first possibility consists in looking for a mono-jet plus missing energy signal /ET +j,
where the mediators that pair produce DM are radiated from top-quark loops [36], while the second
possibility relies on detecting the top-quark decay products that arise from the tree-level reaction
/ET+tt̄ [37]. In the first paper [36] that discussed the /ET+j signal the e↵ects of DM fermions coupled
to heavy-quark loops were characterized in terms of e↵ective higher-dimensional operators, i.e. with
mediators being integrated out. The e↵ects of dynamical scalar and pseudoscalar messengers in the
s-channel mediating interactions between the heavy quarks in the loop and DM were computed in
characterizing the LHC signatures for DM searches in [38, 33, 39, 40, 41].

Final states involving top-quark pairs were considered in the articles [42, 43, 44, 45, 39, 41].
Searches for a /ET + bb̄ signal [37, 42, 45] also provide an interesting avenue to probe (11) and
(12), while the constraints from mono-jet searches on the scalar and pseudoscalar interactions
involving the light quark flavors are very weak due to the strong Yukawa suppression (as discussed
in detail in [38, 46]), and thus are unlikely to be testable at the LHC. Scenarios where the DM-SM
interactions proceed primarily via gluons have also been considered [47].

Predicting mono-jet cross sections in the simplified models (11) and (12) is complicated by
the fact that the highly energetic initial-state and/or final-state particles involved in the process
are able to resolve the structure of the top-quark loops that generate the /ET + j signal (see the
left-hand side of Figure 3). Integrating out the top quark and describing the interactions by an
e↵ective operator of the form �Ga

µ⌫G
a,µ⌫ (aGa

µ⌫G̃
a,µ⌫) with Ga

µ⌫ the field strength tensor of QCD

and G̃a,µ⌫ = 1/2✏µ⌫�⇢Ga
�⇢ its dual, is in such a situation a poor approximation [36, 38]. Already in

the LHC Run I environment the mt ! 1 limit overestimates the exact cross sections by a factor of
5 (40) for m� ' 10 GeV (m� ' 1 TeV) [41]. Removing the top quark as an active degree of freedom
becomes even less justified at 13 (14) TeV, where the /ET and pT,j selection requirements have to
be harsher than at (7) 8TeV to di↵erentiate the DM signal from the SM background. In order to
infer reliable bounds on (11) and (12), one therefore has to calculate the mono-jet cross section
keeping the full top-quark mass dependence. Such calculations are now publicly available at leading
order (LO) in MCFM [38] and at LO plus parton shower (LOPS) in the POWHEG BOX [41]. Given that
the /ET + tt̄ (bb̄) signals arise in the context of (11) and (12) at tree level (see the right-hand side
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Figure 3: Left: Two examples of one-loop diagrams with an exchange of a �/a mediator that provide the dominant
contribution to a mono-jet signature. Right: A tree-level graph that leads to a /ET + tt̄ signal.
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Predicting mono-jet cross sections in the simplified models (11) and (12) is complicated by
the fact that the highly energetic initial-state and/or final-state particles involved in the process
are able to resolve the structure of the top-quark loops that generate the /ET + j signal (see the
left-hand side of Figure 3). Integrating out the top quark and describing the interactions by an
e↵ective operator of the form �Ga

µ⌫G
a,µ⌫ (aGa

µ⌫G̃
a,µ⌫) with Ga

µ⌫ the field strength tensor of QCD

and G̃a,µ⌫ = 1/2✏µ⌫�⇢Ga
�⇢ its dual, is in such a situation a poor approximation [36, 38]. Already in

the LHC Run I environment the mt ! 1 limit overestimates the exact cross sections by a factor of
5 (40) for m� ' 10 GeV (m� ' 1 TeV) [41]. Removing the top quark as an active degree of freedom
becomes even less justified at 13 (14) TeV, where the /ET and pT,j selection requirements have to
be harsher than at (7) 8TeV to di↵erentiate the DM signal from the SM background. In order to
infer reliable bounds on (11) and (12), one therefore has to calculate the mono-jet cross section
keeping the full top-quark mass dependence. Such calculations are now publicly available at leading
order (LO) in MCFM [38] and at LO plus parton shower (LOPS) in the POWHEG BOX [41]. Given that
the /ET + tt̄ (bb̄) signals arise in the context of (11) and (12) at tree level (see the right-hand side
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• Scalars have helicity suppressed annihilation, and SI DD
• Pseudo scalars do not, and have SD momentum suppressed DD
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ũ�
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Types of Simplified models
s-channel vector/axial-scalar

U(1)0Spontaneously broken
(Higgs mode may be 

accessible, can alter physics)

Depending on whether DM is a Dirac fermion � or a complex scalar ', the interactions this new
spin-1 mediator take the form [18, 85, 21, 86, 87, 88]

L
fermion,V � Vµ �̄�µ(gV� � gA� �

5

)� +
X

f=q,`,⌫

Vµ f̄�µ(gVf � gAf �
5

)f , (40)

L
scalar,V � ig'Vµ('⇤@µ' � '@µ'⇤) +

X

f=q,`,⌫

Vµ f̄�µ(gVf � gAf �
5

)f , (41)

where q, ` and ⌫ denote all quarks, charged leptons and neutrinos, respectively. Under the MFV
assumption the couplings of V to the SM fermions will be flavor independent, but they can depend
on chirality (such that gAf 6= 0). For Majorana DM, the vector coupling gV� vanishes, while a real
scalar cannot have any CP-conserving interactions with V .

In the literature, one often finds a distinction between vector mediators with vanishing axi-
alvector couplings (gAf = 0) and axialvector mediators with vanishing vector couplings (gVf = 0).
Neglecting the couplings to neutrinos, the relevant parameters in the former case are

�
m�, MV , gV� , gVu , gVd , gV`

 
, (42)

while, in the latter case, the corresponding set is

�
m�, MV , gA� , gAu , gAd , gA`

 
. (43)

Note, however, that it is rather di�cult to engineer purely axialvector couplings to all quarks, while
being consistent with the SM Yukawa interactions and MFV (as explained below). In the following,
we will consider the general case with non-zero vector and axialvector couplings. Although in this
case the spin-1 mediator is not a parity eigenstate, we will refer to it as a vector mediator for
simplicity.

5.1.1. The Higgs Sector

The most straightforward way to generate the mass of the vector mediator is by introducing an
additional dark Higgs field � with a non-zero VEV. Generically, this particle will not couple directly
to SM fermions, but it could in principle mix with the SM Higgs, leading to a phenomenology similar
to that of Higgs portal models described in Section 4. The mass of the dark Higgs cannot be very
much heavier than that of the vector mediator, and so � may need to be included in the description
if MV is small compared to the typical energies of the collider.

Moreover, if the theory is chiral, i.e. if gA� 6= 0, the dark Higgs will also be responsible for
generating the DM mass. In order for the Yukawa interaction ��̄� to be gauge invariant, we have
to require that the U(1)0 charge of the left-handed and the right-handed component of the DM field
di↵er by exactly qL � qR = q

�

. Consequently, the axialvector coupling of DM to the mediator will
necessarily be proportional to q

�

. The longitudinal component of V (i.e. the would-be Goldstone
mode) then couples to � with a coupling strength proportional to gA� m�/MV . Requiring this
interaction to remain perturbative gives the bound

m� .
p

4⇡

gA�
MV , (44)

implying that the DM mass cannot be raised arbitrarily compared to the mediator mass.
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Consistency of model? How does DM get mass, anomalies…

Bounds on dileptons, leptophobic Z’
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Figure 5: Left: An example of a LO diagram that leads to mono-jet events through the s-channel exchange of a
spin-1 vector resonance V . Right: At the NLO level both virtual and real corrections have to taken into account in
order to obtain a infrared finite result.

of the quark coupling gVq , because the change in the production cross section is compensated by the
change in the invisible branching ratio. If, on the other hand, invisible decays dominate, both the
production cross section and the invisible branching ratio will be invariant under a (small) change
in the coupling gV� .

The same general considerations apply for axialvector couplings instead of vector couplings.
In particular, the production cross section of the vector mediator is largely invariant under the
exchange gVq $ gAq . Note, however, that for m� ! MV /2 the phase space suppression is stronger
for axialvector couplings than for vector couplings, such that for m� ' MV /2 the monojet cross
section is somewhat suppressed for a mediator with purely axialvector couplings.

In many situations invisible decays and decays into quarks will both lead to a non-negligible
contribution to �V as given in (48) and furthermore this width may become so large that one
cannot use the NWA to derive simple scaling laws. If m� becomes close to MV /2 there can also
be contributions from both on-shell and o↵-shell mediators. As a result, all relevant parameters
(m�, MV , gV� and gVq ) must in general be taken into account in order to calculate mono-jet cross
sections.

Di-Jets

Searches for di-jet resonances exploit the fact that any mediator produced from quarks in the
initial state can also decay back into quarks, which lead to observable features in the distribution
of the di-jet invariant mass and their angular correlations. However, for small mediator masses
the QCD background resulting from processes involving gluons in the initial state completely over-
whelms the signal. The most recent di-jet searches at the LHC therefore focus mostly on the region
with di-jet invariant mass mjj & 1 TeV. For smaller mediator masses, the strongest bounds are in
fact obtained from searches for di-jet resonances at UA2 and the Tevatron [98]. An interesting op-
portunity to make progress with the LHC even in the low-mass region is to consider the production
of di-jet resonances in association with other SM particles, such as W or Z bosons, which su↵er
from a significantly smaller QCD background [99, 100].

An important complication concerning searches for di-jet resonances results from the fact that
the width of the mediator can be fairly large. The steeply falling parton distribution functions then
imply that the resonance will likely be produced at lower masses, leading to a significant distortion
of the expected distribution of invariant masses mjj . Existing searches for narrow resonances
therefore typically do not apply to vector mediators with couplings of order unity. Nevertheless,
the shape of the resonance can still be distinguished from SM backgrounds and it is still possible
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Types of Simplified models

•Landscape of simplified models is broad and varied
•Spin/parity of DM and mediator 
•MFV 
•Kinetic mixing
•Higgs portal
•Vector DM
•Other dark sector states alter thermal history & BRs
•Electroweak-inos, singlet-doublet DM, etc
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• Dark sector models have DM-DM interactions
• SIMPs, velocity dependence?

• Core-vs-Cusp, too big to fail,
missing satellites,…
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FIG. 3: Left: Observed rotation curve of dwarf galaxy DDO 154 (black data points) [144] compared to
models with an NFW profile (dotted blue) and cored profile (solid red). Stellar (gas) contributions indicated
by pink (dot-)dashed lines. Right: Corresponding DM density profiles adopted in the fits. NFW halo
parameters are rs ⇡ 3.4 kpc and ⇢s ⇡ 1.5 ⇥ 10

7
M�/kpc

3, while the cored density profile is generated
using an analytical SIDM halo model developed in [80, 82].

axisymmetric disk galaxies, circular velocity can be decomposed into three terms

Vcirc(r) =

q
Vhalo(r)2 + ⌥⇤Vstar(r)2 + Vgas(r)2 , (5)

representing the contributions to the rotation curve from the DM halo, stars, and gas, respectively.
The baryonic contributions to the rotation curve are modeled from the respective surface luminosi-
ties of stars and gas. However, the overall normalization between stellar mass and light remains
notoriously uncertain: stellar mass is dominated by smaller and dimmer stars, while luminosity is
dominated by larger and brighter stars. Estimates for the stellar mass-to-light ratio—denoted by
⌥⇤ in Eq. (5)—rely on stellar population synthesis models and assumptions for the initial mass
function, with uncertainties at the factor-of-two level [143]. Modulo this uncertainty, the DM pro-
file can be fit to observations. For a spherical halo, the DM contribution to the rotation curve is
Vhalo(r) =

p
GMhalo(r)/r, where G is Newton’s constant and Mhalo(r) is the DM mass enclosed

within r.
Fig. 3 illustrates these issues for dwarf galaxy DDO 154. The left panel shows the measured

HI rotation curve [144] compared to fits with cuspy (NFW) and cored profiles, which are shown
in the right panel. The NFW halo has been chosen to fit the asymptotic velocity at large radii and
match the median cosmological relation between ⇢s and rs [82]. However, this profile overpredicts
Vcirc in the inner region. This discrepancy is a symptom of too much mass for r . 2 kpc, while
the data favors a shallower cored profile with less enclosed mass. An NFW profile with alternative
parameters can provide an equally good fit as the cored profile, but the required concentration is
significantly smaller than preferred cosmologically [144].

Recent high-resolution surveys of nearby dwarf galaxies have given further weight to this dis-
crepancy. The HI Near Galaxy Survey (THINGS) presented rotation curves for seven nearby
dwarfs, finding a mean inner slope ↵ = �0.29 ± 0.07 [58], while a similar analysis by LITTLE
THINGS for 26 dwarfs found ↵ = �0.32 ± 0.24 [144]. These results stand in contrast to ↵ ⇠ �1

predicted for collisionless CDM.
However, this discrepancy may simply highlight the inadequacy of DM-only simulations to

infer the properties of real galaxies containing both DM and baryons. One proposal along these
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Positive observations �/m vrel Observation Refs.

Cores in spiral galaxies & 1 cm

2
/g 30 � 200 km/s Rotation curves [64, 80]

(dwarf/LSB galaxies)
Too-big-to-fail problem
Milky Way & 0.6 cm

2
/g 50 km/s Stellar dispersion [74]

Local Group & 0.5 cm

2
/g 50 km/s Stellar dispersion [75]

Cores in clusters ⇠ 0.1 cm

2
/g 1500 km/s Stellar dispersion, lensing [80, 90]

Abell 3827 subhalo merger ⇠ 1.5 cm

2
/g 1500 km/s DM-galaxy offset [91]

Abell 520 cluster merger ⇠ 1 cm

2
/g 2000 � 3000 km/s DM-galaxy offset [92, 93, 94]

Constraints
Halo shapes/ellipticity . 1 cm

2
/g 1300 km/s Cluster lensing surveys [73]

Substructure mergers . 2 cm

2
/g ⇠ 500 � 4000 km/s DM-galaxy offset [79, 95]

Merging clusters . few cm

2
/g 2000 � 4000 km/s Post-merger halo survival Table II

(Scattering depth ⌧ < 1)
Bullet Cluster . 0.7 cm

2
/g 4000 km/s Mass-to-light ratio [68]

TABLE I: Summary of constraints on self-interaction cross section per DM mass. Italicized observations
are based on single individual systems, while the rest are derived from sets of multiple systems. Limits
quoted, which assume constant �/m, may be interpreted as a function of collisional velocity vrel provided
�/m is not steeply velocity-dependent. References noted here are limited to those containing quoted self-
interaction cross section values. Further references, including original studies of observations, are cited in
the corresponding sections below.

stellar kinematics within cluster cores [80] suggest some tension with these values, which indi-
cates the DM scattering cross section has a mild velocity-dependence from dwarf to cluster scales.
We discuss these issues in further detail in §III.

On the theory side, a new semi-analytical SIDM halo model has been developed based on the
Jeans equation [80, 81, 82]. It can reproduce the simulation results for SIDM profiles within 10–
20% while being much cheaper computationally. Discussed in §IV, this approach provides insight
for understanding the baryonic influence on SIDM halo properties [81], testing SIDM models from
dwarf to cluster scales [80], and addressing the diversity problem in SIDM [82].

Furthermore, there has been important progress in particle physics models for SIDM. Both
numerical and analytical methods have been developed to accurately calculate the cross section
for SIDM models involving the Yukawa [83, 84, 85] or atomic interactions [86, 87]. These studies
make it possible to map astrophysical constraints on �/m to the particle model parameters, such as
the DM and mediator masses and coupling constant. In addition, an effective theory approach has
been proposed in parametrizing SIDM models with a set of variables that are directly correlated
with astrophysical observations [88, 89].

In Table I, we summarize the present status of astrophysical observations related to SIDM . The
positive observations indicate discrepancies with CDM-only simulations and the required cross
section assuming self-interactions are responsible for solving each issue. Dwarf and LSB galaxies
favor cross sections of at least 1 cm

2/g to produce large enough core radii in these systems,
which is also consistent with alleviating the too-big-to-fail problem among MW satellites and
field dwarfs of the Local Group. The cross section need not be particularly fine-tuned. Values as
large as 50 cm

2/g provide consistent density profiles on dwarf scales [75]. (The upper limit on
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Winds, streams and flows

Figure 2: Velocity distribution functions: the left panels are in the host halo’s restframe, the
right panels in the restframe of the Earth on June 2nd, the peak of the Earth’s velocity relative
to Galactic DM halo. The solid red line is the distribution for all particles in a 1 kpc wide shell
centered at 8.5 kpc, the light and dark green shaded regions denote the 68% scatter around the
median and the minimum and maximum values over the 100 sample spheres, and the dotted line
represents the best-fitting Maxwell-Boltzmann distribution.

are independent of location and persistent in time and hence reflect the detailed assembly
history of the host halo, rather than individual streams or subhalos. The extrema of the
sub-sample distributions, however, exhibit numerous distinctive narrow spikes at certain
velocities, and these are due to just such discrete structures. Note that although only
a small fraction of sample spheres exhibits such spikes, they are clearly present in some
spheres in all three simulations. The Galilean transform into the Earth’s rest frame washes
out most of the broad bumps, but the spikes remain visible, especially in the high veloc-
ity tails, where they can profoundly a�ect the scattering rates for inelastic and light DM
models (see Section 4).
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Via Lactea IIVDF of Dark Matter from Simulations 3

Figure 2. The VDF for one representative dark matter halo
in Rhapsody (histogram), along with the best fits using Eq. (1)
with (v0/vesc, p) = (0.13, 0.78) (black, χ2 = 0.59), SHM (blue,
9.67), the double power-law model (cyan, 9.47), the Tsallis model
(green, 1.99), and the analytic VDFs from Eddington’s formula
with isotropic assumption (red dash, 8.48), Osipkov–Merritt (ma-
genta dash, 6.41), and constant β = 1/2 (yellow dash, 11.8). The
y-axis is in log scale in the main figure and linear in the inset.

as q → 1 (Vergados et al. 2008). It was argued that
the Tsallis model provides better fit to simulations with
baryons (Ling et al. 2010), although this conclusion may
be affected by the relatively low resolution of the simu-
lations.
In contrast, our empirical model, Eq. (1), is not based

on a Gaussian distribution but rather on an exponential
distribution. It also has a power-law cut-off in (binding)
energy. Fig. 2 shows the VDF in a simulated halo, along
with the best fit from Eq. (1) and the best fits from other
conventional models. All the best-fit parameters are ob-
tained from the maximum-likelihood estimation in the
range of (0, vesc). The fits using Eq. (1) are statistically
better than other models or the analytic VDFs, espe-
cially around the peak and the tail. We performed the
likelihood-ratio test and found that our model fits sig-
nificantly better for all Rhapsody halos than the SHM
or the double power-law model at all four radii shown in
Fig. 1.
In Fig. 2 we also compare three analytic VDFs. For

the isotropic model shown, the analytic VDF is given
by Eddington’s formula, which gives a one-to-one corre-
spondence between the density profile and the VDF. For
anisotropic systems, one must also model the anisotropy
parameter, defined as β = 1 − (σ2

θ + σ2
φ)/(2σ

2
r), where

σ2 is the variance in each velocity component. There
is currently no analytic VDF whose anisotropy profile
matches that measured in simulations, so we choose three
simple and representative anisotropic models: constant
anisotropy (with β = 0 and 1/2) and the Osipkov–
Merritt model (Osipkov 1979; Merritt 1985). The phase-
space distributions of these models can be determined
numerically (Binney & Tremaine 2008). For all three
cases, we adopt the NFW profile as in Eq. (2), with the
best-fit scale radius. For the Osipkov–Merritt model, we
use the best-fit anisotropy radius. It is shown in Fig. 2
and also suggested by the chi-square test for the models
considered that the analytic VDFs do not describe the
simulated VDF well.
Our VDF model, Eq. (1), consists of two terms: the

exponential term and the cut-off term. The origin of the

the exponential term can be explained by the anisotropy
in velocity space. Fig. 3 shows the distributions, the dis-
persion, and the kurtosis of the velocity vectors along
the three axes of the spherical coordinate. Kurtosis is a
measure of the peakedness of a distribution, defined as
(
∑

i v
4
i )/(

∑

i v
2
i )

2 − 3, where vi is the velocity of the i-th
particle along one axis, and this value is zero for the nor-
mal distribution. The ratios of dispersion between the
three axes are close to one at small radii, and the ratios
increase with radius. The kurtosis, on the other hand,
is in general non-zero and decreases with radius. An
important consequence of the non-zero kurtosis is that
even if the dispersion along the three axes are similar
(anisotropy parameter β ∼ 0), the velocity vectors do
not follow an isotropic multivariate normal distribution
in any coordinate system (even after a local coordinate
transformations). In other words, as long as there exists
either anisotropy or non-zero kurtosis in a certain coordi-
nate, the norms of the velocity vectors will not follow the
Maxwell–Boltzmann distribution. Indeed, Fig. 3 shows
that in the simulations, one always has non-zero kurto-
sis and/or anisotropy. Other simulations also indicate
that the velocity vectors of dark matter particles have
anisotropy (Abel et al. 2011; Sparre & Hansen 2012) and
non-zero kurtosis (Vogelsberger et al. 2009). We further
found that if the ratios of dispersion between the three
axes of a multivariate normal distribution are around 0.2
to 0.6, the norms of those random vectors will follow a
distribution which resembles our model without the cut-
off term, v2 exp(−v/v0). (For a formal discussion on this
topic, see e.g. Bjornson et al. 2009.) This suggests that if
one can find a coordinate system where the distributions
of the velocity components are all distributed normally
(with zero kurtosis), there will be a larger difference be-
tween the dispersion along the three axes in this new
coordinate system than in the spherical coordinate.
The (v2esc − v2)p term in our VDF model introduces a

cut-off at the escape velocity. It further suppresses the
VDF tail more than the exponential term alone does. De-
spite that this cut-off term has the form of a power-law
in (binding) energy, the best-fit values of the parameter
p does not necessarily reflect the “asymptotic” power-
law index k, defined as k = limE→0(d ln f/d ln E), where
f(E) is the (binding) energy distribution function. The
relation between k and the outer density slope has been
studied in the literature (Evans & An 2006; Lisanti et al.
2011). However, because d ln f/d ln E deviates from its
asymptotic value k rapidly as E deviates from zero,
the asymptotic power-law index k could be very differ-
ent from the best-fit power-law index for the VDF tail
(e.g. v > 0.9vesc). Furthermore, the shape of the VDF
power-law tail could be set by recently-accreted subha-
los that have not been fully phase-mixed (Kuhlen et al.
2012), and hence has no simple relation with the density
profile. In high-resolution simulated dark matter halos,
particles stripped off of a still-surviving subhalo are seen
to significantly impact the tail of the VDF. A larger sam-
ple of simulations at higher resolution than we consider
in the current analysis will be needed to further test this
hypothesis.

4. HALO-TO-HALO SCATTER IN VELOCITY
DISTRIBUTIONS

Mao, Strigari, Wechsler
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FIG. 5. Tangential vs radial velocity components (km/s) of dark matter within a radial shell 7.5 < r < 9.5

kpc in the Galactic frame. On the left, the distribution for dark matter debris and in the middle, the

distribution for all VL2 particles in this radial shell. The right panel shows the distribution of debris

particles (blue triangles) and all VL2 particles without the debris contribution (red circles) as a function of

cos ✓e, where ✓e is the angle between the velocities of the particles in the Galactic frame and the direction

of Earth’s motion.

where the threshold speed v

min

is given by
p

mNER/2µ

2 for elastic scattering. If the scattering

is dominated by a Maxwellian distribution f(v) / v

2

e

�v2/v2
0 in the Galactic frame, the expected

recoil spectrum is exponentially falling [1]. If, in contrast, the local dark matter is dominated by a

stream, then the scattering rate is constant up to a recoil energy corresponding to |~v
stream

�~ve| [62],

where ~ve is given in Eq. 2.

The particles in the debris flow have speeds characterized by the distribution function

f(v) =
1

N

dN

dv

=
1

N

dN

d cos ✓e

d cos ✓e

dv

(5)

in the Earth frame, where N is the total number of debris particles and ✓e is the angle between

the velocities of the flow particles in the Galactic frame and the direction of Earth’s motion. This

angle is related to the Earth-frame velocities through

v

2 = v

2

flow

+ ve(t)
2 � 2v

flow

ve(t) cos ✓e, (6)

where v

flow

is the speed of the debris flow in the Galactic frame. A complete expression for f(v)

depends on how the debris particles are distributed as a function of cos ✓e. Figure 5 shows the

tangential and radial Galactic-frame velocity distributions for the debris (left) and for all VL2

particles (middle) in a 7.5–9.5 kpc radial shall. The right panel shows the distribution of debris

particles as a function of cos ✓e. The results show that the debris flow is nearly uniformly distributed

(isotropic) in cos ✓e, with dN/d cos ✓e = N/2.

Debris flow, Lisanti et al.



Local abundance and velocity distribution are inputs into 
the interpretation of direct detection experiments

Only way to measure these things is through direct 
detection experiments

The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-

tering rate” – deconvoluted of the nuclear form factor,

R ⇥ 1

F 2
N (ER)

dR

dER

=
⇧

i

NimN

⌃ vmax

vi,min

dvi vifi1(vi)⇤̄i(vi, ER). (11)

Some overall factors have been buried into a normaliza-
tion factor, Ni = NT ⇥�i/(µ

2
im�i). While there are im-

portant uncertainties in the determination of dark mat-
ter nuclear form factors from nuclear data [48], this is
not our concern. Errors on the deconvoluted scattering
rate ought to take into account nuclear form factor un-
certainties.
Next, taking a derivative with respect to ER we find

dR
dER

=
⇧

i

NimN

⇤⌃ vmax

vi,min

dvivifi1(vi)
d⇤̄i(vi, ER)

dER

�vi,min
dvi,min

dER
fi1(vi,min)⇤̄(vi,min, ER)

⇥
. (12)

For arbitrary 2 ⌅ 2 kinematics (elastic or inelastic), we
can replace

vi,min
dvi,min

dER
=

m2
NE2

R � µ2
i �

2
i

4mNµ2
iE

2
R

. (13)

This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):

f1(vmin(ER)) = � 4µ2E2
R

m2
NE2

R � µ2�2
1

N⇤0(vmin(ER))F 2
�(ER)

⇤
dR
dER

�R 1

F 2
�(ER)

dF 2
�(ER)

dER

⌅
. (14)

This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as

dR
dER

=
⇧

i

wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1

4

�
m2

N

µ2
i

� �2i
E2

R

⇥
Ni⇤i0(v) (16)

For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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and F 2
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convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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(Deconvoluted) rate is a monotonically decreasing function, 
or there is non-standard particle physics e.g. inelastic or a 

increasing DM form factor

[PJF, Kribs, Tait]
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Here we use the reduced mass defined with respect to the
incoming particles,

µ ⇤ m�mN

m� +mN
. (1)

The recoil energy of the collision is ER = q2/2m�
N with

q2 = p2 + p�2 � 2p p� cos ⇥com . (2)

The recoil of energy ER, velocity v and cos ⇥lab are related
by,

v2

2
��

m�

m��
� v

m�

m��

⇣
2mN �ER cos ⇥lab

�
⌃
ER

⌅
1 +

mN �

m��

⇧
+ �� + �N

⌥
= 0 . (3)

Define � ⇤ �� + �N . If � > 0, we can safely perform an
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which taking �N ⇧ 0 is the well-known result for in-
elastic dark matter (iDM) [40–42]. By “safe” we mean
that our upper bound on vmin, which is in the far non-
relativistic regime, automatically implies |�| ⌅ m�,mN

to allow scattering to be kinematically possible.
Up to higher order terms in �/m, we obtain an expres-

sion for the recoil energy
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This result has the well known feature that the smallest
recoil energies come from maximizing v2 cos2 ⇥lab, corre-
sponding physically to head-on collisions at the highest
velocities available.

III. EVENT DISTRIBUTIONS

Our basic assumptions consist of assuming the scat-
tering process is o⇥ only one type of nuclei. We will,
however, remain general with respect to the possibility of
multiple WIMPs with di⇥erent masses, abundances, and
cross sections. One might think it requires a large coin-
cidence to have several dark matter particles with cross
sections large enough to produce events in an experiment.
However, there are well known counterexamples where it
can be natural to have the abundance of particles to be

independent of their mass (and thus, have several candi-
dates of di⇥erent masses with similar abundances, using
for example the WIMPless miracle [43]).
The event rate of dark matter scattering [44], di⇥eren-

tial in ER, is determined by
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where the sum is over di⇥erent species of WIMPs, mN ⌃
Amp is the nucleus mass with mp the proton mass and
A the atomic number. The recoil energy depends on the
kinematics of the collision, as described above. Given
our assumption of no significant time variation in the
rate, f(⇧vi(t)) ⇧ f(⇧vi), and thus we are e⇥ectively ne-
glecting the Earth’s motion around the Sun. This is a
reasonable approximation so long we are probing veloci-
ties larger than Earth’s velocity in the Sun’s frame, i.e.,
vmax � 30 km/s. Typically the maximum speed is taken
to be vmax = vearth + vesc, the galactic escape velocity
boosted into the Earth frame. However, vmax is ulti-
mately determined by the (unknown) details of the dark
matter velocity distribution in Earth frame.
Given our assumption of no direction dependent signal,

we can carry out the angular integral in Eq. (7), reduc-
ing it to a one dimensional integral where we introduce
the quantity1 f1(v) =
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where we have written

d⌅i

dER
= F 2

N (ER)
mN

µiv2i
⌅̄i(vi, ER) (9)

in terms of the nuclear form factor F 2
N (ER). There are

several possible forms for the scattering cross section
⌅̄i(v, ER), depending on the interaction,
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The di⇥erent forms for ⌅̄ correspond to functional forms
of known dark matter scattering that contain velocity
and/or recoil energy dependence. The first possibility,
a constant independent of v and ER is the well-known
isotropic (s-wave) cross section that results at lowest
order in the non-relativistic expansion from many dark
matter models.

1 The velocity distribution is normalized such that
�
d3vf(v) = 1.
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f-condition:

The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-

tering rate” – deconvoluted of the nuclear form factor,
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Some overall factors have been buried into a normaliza-
tion factor, Ni = NT ⇥�i/(µ

2
im�i). While there are im-

portant uncertainties in the determination of dark mat-
ter nuclear form factors from nuclear data [48], this is
not our concern. Errors on the deconvoluted scattering
rate ought to take into account nuclear form factor un-
certainties.
Next, taking a derivative with respect to ER we find
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For arbitrary 2 ⌅ 2 kinematics (elastic or inelastic), we
can replace
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. (13)

This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):
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This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as

dR
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wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1
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For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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Local abundance and velocity distribution are inputs into 
the interpretation of direct detection experiments

Only way to measure these things is through direct 
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which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.
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This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):
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This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin
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R , we

obtain information on the velocity distribution f(v) over
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form factors, the inversion result can be written as
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For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
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Here we use the reduced mass defined with respect to the
incoming particles,
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which taking �N ⇧ 0 is the well-known result for in-
elastic dark matter (iDM) [40–42]. By “safe” we mean
that our upper bound on vmin, which is in the far non-
relativistic regime, automatically implies |�| ⌅ m�,mN

to allow scattering to be kinematically possible.
Up to higher order terms in �/m, we obtain an expres-

sion for the recoil energy

E2
R + 2ER

µ

mN
(� � µv2 cos2 ⇥lab) +

µ2

m2
N

�2 = 0 (5)

The recoil energy is unique for a given fixed scattering
relative velocity v and nucleus recoil angle ⇥lab and can
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This result has the well known feature that the smallest
recoil energies come from maximizing v2 cos2 ⇥lab, corre-
sponding physically to head-on collisions at the highest
velocities available.

III. EVENT DISTRIBUTIONS

Our basic assumptions consist of assuming the scat-
tering process is o⇥ only one type of nuclei. We will,
however, remain general with respect to the possibility of
multiple WIMPs with di⇥erent masses, abundances, and
cross sections. One might think it requires a large coin-
cidence to have several dark matter particles with cross
sections large enough to produce events in an experiment.
However, there are well known counterexamples where it
can be natural to have the abundance of particles to be

independent of their mass (and thus, have several candi-
dates of di⇥erent masses with similar abundances, using
for example the WIMPless miracle [43]).
The event rate of dark matter scattering [44], di⇥eren-

tial in ER, is determined by
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where the sum is over di⇥erent species of WIMPs, mN ⌃
Amp is the nucleus mass with mp the proton mass and
A the atomic number. The recoil energy depends on the
kinematics of the collision, as described above. Given
our assumption of no significant time variation in the
rate, f(⇧vi(t)) ⇧ f(⇧vi), and thus we are e⇥ectively ne-
glecting the Earth’s motion around the Sun. This is a
reasonable approximation so long we are probing veloci-
ties larger than Earth’s velocity in the Sun’s frame, i.e.,
vmax � 30 km/s. Typically the maximum speed is taken
to be vmax = vearth + vesc, the galactic escape velocity
boosted into the Earth frame. However, vmax is ulti-
mately determined by the (unknown) details of the dark
matter velocity distribution in Earth frame.
Given our assumption of no direction dependent signal,

we can carry out the angular integral in Eq. (7), reduc-
ing it to a one dimensional integral where we introduce
the quantity1 f1(v) =
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becomes
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in terms of the nuclear form factor F 2
N (ER). There are

several possible forms for the scattering cross section
⌅̄i(v, ER), depending on the interaction,
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The di⇥erent forms for ⌅̄ correspond to functional forms
of known dark matter scattering that contain velocity
and/or recoil energy dependence. The first possibility,
a constant independent of v and ER is the well-known
isotropic (s-wave) cross section that results at lowest
order in the non-relativistic expansion from many dark
matter models.

1 The velocity distribution is normalized such that
�
d3vf(v) = 1.
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The second possibility contains a dark matter form fac-
tor F�i (following the standard normalization convention
F�i(ER = 0) = 1) and commonly occurs in models of
composite dark matter [45–47]. Our formalism will han-
dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
most general form written on the fourth line of Eq. (10)].

We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.

IV. DECONVOLUTED SCATTERING RATE

Since the scattering rate (8) in any given direct de-
tection experiment is proportional to the nuclear form
factor, we first factor it out. This leads to a definition of
a new quantity, R, that we call the “deconvoluted scat-

tering rate” – deconvoluted of the nuclear form factor,
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Some overall factors have been buried into a normaliza-
tion factor, Ni = NT ⇥�i/(µ

2
im�i). While there are im-

portant uncertainties in the determination of dark mat-
ter nuclear form factors from nuclear data [48], this is
not our concern. Errors on the deconvoluted scattering
rate ought to take into account nuclear form factor un-
certainties.
Next, taking a derivative with respect to ER we find
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For arbitrary 2 ⌅ 2 kinematics (elastic or inelastic), we
can replace
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This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,

Eq. (11) can be used to solve for f1(v) (see also [49–52]):

f1(vmin(ER)) = � 4µ2E2
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This result allows us to gain information on the velocity
distribution of dark matter evaluated at the minimum
velocity to scatter for a given recoil energy ER. With
scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as
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=
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wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1
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For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate
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dle the factorizable forms, i.e., the first three of Eq. (10),
which incorporates the vast bulk of what has been consid-
ered in the literature. We will not, however, consider the
cross sections that contain completely arbitrary nonfac-
torizable velocity and recoil energy dependence [c.f., the
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We now turn to the question of what can be inferred
from a signal in direct detection experiments using (8)
without making any assumptions about f1 or the dark
matter scattering cross section ⇤0. We will however,
make an assumption about the maximum dark matter
speed, vmax, and we will demonstrate how the derived
dark matter properties depend on this assumption.
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This is as far as we can go with a general signal from an
ensemble of WIMPs with arbitrary cross sections.
For a single WIMP with a factorizable cross section,
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scattering data over the range Emin

R < ER < Emax
R , we

obtain information on the velocity distribution f(v) over
a range of v: vmin(Emin

R ) < v < vmin(Emax
R ).

For an ensemble of WIMPs, ⌅i, without dark matter
form factors, the inversion result can be written as

dR
dER

=
⇧

i

wi(v, ER)fi1(v) , (15)

where the velocity distributions of the WIMPs are
“weighted” by the factors

wi(v, ER) = �1

4

�
m2

N

µ2
i

� �2i
E2

R

⇥
Ni⇤i0(v) (16)

For an ensemble of WIMPs with form factors, no simple
closed form can be written.

V. f-CONDITION

There is valuable information that can be extracted
from Eqs. (14) and (15). We know the velocity distribu-
tion of dark matter must be positive for all v,

f(v) ⇤ 0 , (17)

which we call the “f -condition”. Using this condition,
the right-hand side of Eq. (14) must be positive. Simi-
larly the f -condition also places constraints on the terms
appearing in Eq. (15).
Consider the case of single WIMP with standard elas-

tic scattering without a dark matter form factor, � = 0
and F 2

�(ER) = 1. From Eq. (14) we conclude that the de-
convoluted scattering rate is always a decreasing function
of ER.
A more striking consequence is reached if a rising de-

convoluted scattering rate is ever observed. Should there
be a range of data where the deconvoluted scattering rate

4

(Deconvoluted) rate is a monotonically decreasing function, 
or there is non-standard particle physics e.g. inelastic or a 

increasing DM form factor

[PJF, Kribs, Tait]



Two experiments allow us to test particle 
physics independent of astrophysics
1) Make hypothesis about DM e.g. elastically scattering DM 
with mass 100 GeV and x-sec 10-40 cm2

2) Use experiment A to extract astrophysics i.e. rho x f(v)
3) Use these extracted astrophysics properties to predict 
result at experiment B
4) Compare to B’s measurement/bound
5) Rule in our out each particle physics hypothesis 

Doesn’t allow extraction of “unique” x-sec, mass
Need relatively large statistics ~10’s events
Experiments must run over same part of year
Other uncertainties (nuclear, atomic etc not addressed)



Halo model independence
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Recoil energy uniquely determines 
minimum DM velocity
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This brings to the central point of our e�orts: to make a comparison between two ex-

periments one must first determine whether the vmin space probed by the two experiments

overlaps. As a matter of practical course, a given experiment has a lower energy threshold

Emin, which can be translated into a lower bound on the vmin range. If experiment 1 has

data for the di�erential rate of DM scattering in their experiment, dR1/dER at energies E(1)
i

this can be used to predict a rate at energy E(2)
i at experiment 2, dR2/dER, or vice versa if

experiment 2 has the signal. Thus, we have

[E(1)
low, E

(1)
low] �⇥ [vlowmin, v

high
min ] �⇥ [E(2)

low, E
(2)
high], (6)

where

[E(2)
low, E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low, E

(1)
high]. (7)

We can invert (1) to solve for g(vmin) limited to the range vmin ⇤ [vlowmin,1, v
high
min,2]

g(vmin) =
2m�µ2

NA�mp ⇥ ⇤(ER)

dR1

dE1
(8)

This then allows us to explicitly state the expected rate for experiment two, again 2 re-

stricted to the energy range dictated by the appropriate velocity range i.e. E ⇤ [E(2)
low, E

(2)
high].

Analogous to the energy mapping above, we have a rate mapping,

dR1

dE1
�⇥ g(vmin) �⇥ dR2

dE2
, (9)

with

dR2

dER
(E2) =

�(2)µ2
1

�(1)µ2
2

⇤2(E2)

⇤1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1 M

(2)
T

µ2
2 M

(1)
T

E2

⌅
. (10)

Equations (7), (8) and (10) are the central results of this paper. They make no astrophysical

assumptions, but only rely upon the assumption that an actual signal has been observed.

We now focus on the SI case, since there are a greater number of experiments probing

this scenario, but the analysis for SD is similar. In this (SI) case we can use (5) to rewrite

2 Since g(v), by its definition, is a monotonically decreasing function of vmin, one can in principle go to

lower energies as well, but one may only place a lower bound on the predicted rate, rather than make a

true prediction.
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Figure 12: Modulation amplitude in the range 1.5–3.1 keVee as a function of dark matter mass, where
the dark matter cross section is normalized to fit the modulation amplitude in the first bin (left) and
over the whole energy range (right). The colors indicate di�erent spectral indices for Eq. 4.2: k=1
(blue), k=2 (pink), k=3 (green). The regions between (above) the solid (dashed) lines indicate points
that overpredict the unmodulated rate by at least 2⇥ from 0.5–1.5 keVee (1.5–3.1 keVee). The solid
colored bands are the only regions consistent with the unmodulated rate spectrum. The gray band is
the modulated amplitude with 1⇥ error bars for the 1.5–3.1 keVee region.

4.3 Model-Independent Comparisons

In this subsection, we explore the constraints from other experiments on the CoGeNT mod-

ulation, assuming it arises from elastic dark matter. Comparing rates between di�erent

direct detection experiments with di�erent target nuclei is non-trivial because each probes

a di�erent range of dark matter velocities. However, a means of comparing the results of

di�erent experiments independent of halo models has recently been proposed [44].4 For elas-

tic spin-independent scattering, a signal in the range [E(1)
low,E

(1)
high] at Experiment 1 arises in

Experiment 2 in the energy range

[E(2)
low,E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low,E

(1)
high] , (4.3)

where M (i)
T is the mass of the target nucleus in each experiment and µi is the DM-nucleus

reduced mass for each experiment. For a rate, dR1/dER, observed at Experiment 1, the rate

expected at Experiment 2 is

dR2

dER
(E2) =

C(2)
T

C(1)
T

F 2
2 (E2)

F 2
1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1M

(2)
T

µ2
2M

(1)
T

E2

⌅
. (4.4)

4For related work see [45].
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Bin CoGeNT Ge Na (Q=0.3) Si O Xe

1
[0.5,0.9] [2.3,3.8] [1.5,2.5] [4.5,7.6] [5.8,9.9] [1.4,2.3]

0.90± 0.72 0.23± 0.18 0.078± 0.062 0.035± 0.028 0.011± 0.009 0.72± 0.58

2
[0.9,1.5] [3.8,6.1] [2.5,4.0] [7.6,11.9] [9.9,15.6] [2.3,3.7]

0.37± 0.55 0.1± 0.149 0.035± 0.052 0.015± 0.023 0.005± 0.008 0.31± 0.46

3
[1.5,2.3] [6.1,8.9] [4.0,5.8] [11.9,17.5] [15.6,22.8] [3.7,5.4]

0.48± 0.22 0.136± 0.063 0.049± 0.022 0.021± 0.01 0.007± 0.003 0.41± 0.19

4
[2.3,3.1] [8.9,11.6] [5.8,7.6] [17.5,22.8] [22.8,29.8] [5.4,7]

0.27± 0.23 0.08± 0.068 0.029± 0.025 0.013± 0.011 0.004± 0.004 0.23± 0.2

Table 2: Predicted modulation amplitudes for example nuclear targets, given the best-fit values for
CoGeNT assuming a Maxwellian phase. The units are in counts/day/kg/keVnr for all columns, except
that labelled CoGeNT where they are counts/day/kg/keVee. The equivalent energy ranges and rates
for other targets are shown, assuming m� = 7 GeV and spin-independent scattering cross sections
proportional to A2. Note that we have not included detector e⇥ciencies or mass fractions in any of
the predicted rates.

Here,

C(i)
T = �(i)

�
fp Z

(i) + fn (A
(i) � Z(i))

⇥2
, (4.5)

where � is the mass fraction for the target element in question, and Fi is the nuclear form

factor for each experiment.

Tables 2 and 3 show the ranges of energies at other experiments that correspond to the

CoGeNT energy bins: [0.5, 0.9], [0.9, 1.5], [1.5, 2.3], and [2.3, 3.1] keVee. Note that these

energies are given in “electron equivalent” and correspond to [2.3, 3.8], [3.8, 6.1], [6.1, 8.9],

and [8.9, 11.6] in nuclear recoil energies. These tables also show how the CoGeNT modulation

amplitude in each energy bin translates to other experiments, assuming a 7 GeV WIMP with

spin-independent scattering proportional to A2. (Note that we have not included detector

e⇥ciencies or mass fractions in any of the predicted rates.) Let us consider each experiment

in turn.

CDMS-Ge: A direct comparison can be made between the CoGeNT and CDMS count

rates because they both have germanium targets. Using the results of the low-energy analysis

of the CDMS experiment [16], we calculate an upper limit for the rate in each detector such

that it has a 1.3% probability of having a lower rate. This gives a probability of 10% that

any one of CDMS’s eight detectors has a lower rate than is observed. In each of the five

energy bins, the strongest limit from all the detectors is chosen and we treat this as a 90%

confidence limit.5 Figure 13 shows that the count rates at CDMS are not low enough to

constrain the CoGeNT modulation. However, the count rates are low enough that there

should be modulation at a very high level in CDMS. Thus, even weak modulation constraints

5The probability that the particular detector that sets the limit has a strong downward fluctuation is small,

and so the confidence is actually better than 90%, but we treat it as a 90% C.L. to be conservative.
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FIG. 1: v
min

thresholds for various experiments. Solid bands are CRESST Oxygen band, 15-

40 keV (red, top), DAMA Na band 6.7-13.3 keV (green, middle), CoGeNT Ge 1.9-3.9 keV (blue,

bottom). Constraints are Xenon 1, 2 and 5 keV (dashed, dotted, and dot-dashed, thick blue), and

CDMS-Si 7 and 10 keV, (dot-dashed and dashed, thin red).

some with signals, some without. The possible comparisons between these various exper-

iments will be the subject of the subsequent sections. Using (11) scattering rates can be

compared between experiments. However, to compare to actual experimental data the rel-

ative exposures, e�ciencies and other detector-specific factors must be correctly taken into

account. In the next section we describe in detail the experimental parameters necessary

for the comparisons in the rest of the paper.

III. APPLICATIONS: A COMPARISON OF EXISTING EXPERIMENTS

The important consequences of (10) are immediately obvious. In principle, one can com-

pare a positive signal at one experiment with one at another, or test the compatibility of a

null result with a positive one. Unfortunately, ideal circumstances will rarely present them-

selves: additional backgrounds can complicate the extraction of g(v), resolution can smear

signals, or uncertainties in atomic physics (such as quenching factors) can complicate issues,

making a precise extraction of the true E
NR

and hence v
min

impossible. Furthermore, the

signal may appear as a modulation (as in DAMA) limiting access to g(v) to a summer/winter

7

Using vmin space



This brings to the central point of our e�orts: to make a comparison between two ex-

periments one must first determine whether the vmin space probed by the two experiments

overlaps. As a matter of practical course, a given experiment has a lower energy threshold

Emin, which can be translated into a lower bound on the vmin range. If experiment 1 has

data for the di�erential rate of DM scattering in their experiment, dR1/dER at energies E(1)
i

this can be used to predict a rate at energy E(2)
i at experiment 2, dR2/dER, or vice versa if

experiment 2 has the signal. Thus, we have

[E(1)
low, E

(1)
low] �⇥ [vlowmin, v

high
min ] �⇥ [E(2)

low, E
(2)
high], (6)

where

[E(2)
low, E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low, E

(1)
high]. (7)

We can invert (1) to solve for g(vmin) limited to the range vmin ⇤ [vlowmin,1, v
high
min,2]

g(vmin) =
2m�µ2

NA�mp ⇥ ⇤(ER)

dR1

dE1
(8)

This then allows us to explicitly state the expected rate for experiment two, again 2 re-

stricted to the energy range dictated by the appropriate velocity range i.e. E ⇤ [E(2)
low, E

(2)
high].

Analogous to the energy mapping above, we have a rate mapping,

dR1

dE1
�⇥ g(vmin) �⇥ dR2

dE2
, (9)

with

dR2

dER
(E2) =

�(2)µ2
1

�(1)µ2
2

⇤2(E2)

⇤1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1 M

(2)
T

µ2
2 M

(1)
T

E2

⌅
. (10)

Equations (7), (8) and (10) are the central results of this paper. They make no astrophysical

assumptions, but only rely upon the assumption that an actual signal has been observed.

We now focus on the SI case, since there are a greater number of experiments probing

this scenario, but the analysis for SD is similar. In this (SI) case we can use (5) to rewrite

2 Since g(v), by its definition, is a monotonically decreasing function of vmin, one can in principle go to

lower energies as well, but one may only place a lower bound on the predicted rate, rather than make a

true prediction.

5

This brings to the central point of our e�orts: to make a comparison between two ex-

periments one must first determine whether the vmin space probed by the two experiments

overlaps. As a matter of practical course, a given experiment has a lower energy threshold

Emin, which can be translated into a lower bound on the vmin range. If experiment 1 has

data for the di�erential rate of DM scattering in their experiment, dR1/dER at energies E(1)
i

this can be used to predict a rate at energy E(2)
i at experiment 2, dR2/dER, or vice versa if

experiment 2 has the signal. Thus, we have

[E(1)
low, E

(1)
low] �⇥ [vlowmin, v

high
min ] �⇥ [E(2)

low, E
(2)
high], (6)

where

[E(2)
low, E

(2)
high] =

µ2
2M

(1)
T

µ2
1M

(2)
T

[E(1)
low, E

(1)
high]. (7)

We can invert (1) to solve for g(vmin) limited to the range vmin ⇤ [vlowmin,1, v
high
min,2]

g(vmin) =
2m�µ2

NA�mp ⇥ ⇤(ER)

dR1

dE1
(8)

This then allows us to explicitly state the expected rate for experiment two, again 2 re-

stricted to the energy range dictated by the appropriate velocity range i.e. E ⇤ [E(2)
low, E

(2)
high].

Analogous to the energy mapping above, we have a rate mapping,

dR1

dE1
�⇥ g(vmin) �⇥ dR2

dE2
, (9)

with

dR2

dER
(E2) =

�(2)µ2
1

�(1)µ2
2

⇤2(E2)

⇤1

�
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⇥ dR1

dER

⇤
µ2
1 M

(2)
T

µ2
2 M

(1)
T

E2

⌅
. (10)

Equations (7), (8) and (10) are the central results of this paper. They make no astrophysical

assumptions, but only rely upon the assumption that an actual signal has been observed.

We now focus on the SI case, since there are a greater number of experiments probing

this scenario, but the analysis for SD is similar. In this (SI) case we can use (5) to rewrite

2 Since g(v), by its definition, is a monotonically decreasing function of vmin, one can in principle go to

lower energies as well, but one may only place a lower bound on the predicted rate, rather than make a

true prediction.

5

Solve for g(v)

For instance, [38] argued that an independent comparison for the iodine spin-independent

explanation of DAMA could be made by studying the comparable range of energy at a

Xenon target, given their kinematical similarity. It was pointed out in [39] that there is an

overlap in velocity space between the � 1keVee signal at CoGeNT and the 7 keVr threshold

at CDMS-Si. With positive results at two experiments, a measurement of the WIMP mass

can be done without assuming a halo model [40]. Finally, [41] studied the possibility of

extracting f(v) from dark matter experiments in the future when large signals have been

found.

In this paper, we take a di�erent approach. Rather than attempt to find the physical

function f(v), or study variations in it, we attempt to directly map experimental signals from

one detector to another. We do this by focusing on integral quantities, namely g(vmin) =
�
vmin

dvf(v)/v and
�
dv vg(v). We determine the robustness of constraints by considering

the relationship between recoil energy and vmin space, rather than actual velocity space.

Although in our approaches we will gain less information about astrophysics, we can compare

experiments even when f(v) cannot be reliably extracted.

II. vmin RANGES AND ASTROPHYSICS-INDEPENDENT SCATTERING

RATES

Our approach will be simple: we will endeavor to map an energy range in a given ex-

periment into the halo velocity space, and from there into any other experiment we wish to

compare to. In this way, we can determine what energy ranges of experiments can be di-

rectly compared. In optimal situations, we will be able to extract g(v), while in less optimal

situations we will only be able to discuss total rates.

We begin with the di�erential rate at a direct detection experiment, which for elastically

scattering DM is given by,

dR

dER
=

NTMT⇥

2m�µ2
⇤(ER) g(vmin) , (1)

where µ is the DM-nucleus reduced mass, and NT = �NAmp/MT is the number of target

scattering sites per kg with NA Avogadro’s number and � the mass fraction of the detector

that is scattering DM. The function g(vmin) is related to the integral of the DM speed

3

The master formula (SI):
(10) in a simple form

dR2

dER
(E2) =

C(2)
T

C(1)
T

F 2
2 (E2)

F 2
1

⇤
µ2
1 M

(2)
T

µ2
2M

(1)
T

E2

⌅ dR1

dER

⇧
µ2
1 M

(2)
T

µ2
2 M

(1)
T

E2

⌃
, (11)

where we have introduced a target specific coe⇥cient

C(i)
T = ⇥(i)

�
fp Z

(i) + fn (A
(i) � Z(i))

⇥2
. (12)

In certain situations di�erential rates may not be available and instead it is only possible

to compare total rates, this is the situation at present with CRESST. In general the total

rate at a particular experiment with energy — and corresponding velocity — thresholds of

(Elow, vlowmin) and (Ehigh, v
high
min ), can be expressed as,

R =
2NA⇤mp

m�

⇥

MT

⌥ vhigh

vlow

dv �(ER)⌅(ER(v))vg(v) . (13)

For the particular case of SI on which we are focused this becomes,

R =

⇤
2NA⇤ ⌅pmp

m� µ2
n� f

2
p

⌅⇤
µ2CT

MT

⌅⌥ vhigh

vlow

dv �(ER)F
2(ER(v))vg(v) , (14)

where �(ER) an an energy-dependent e⇥ciency. To compare two experiments, we must

extract the energy dependent terms from the integral. So while we make no assumptions

about g(v), we evaluate the form factor at a value Ē2 = Ē1µ2
2M

(1)
T /µ2

1M
(2)
T where the ra-

tio �2(Ē2)F 2
2 (Ē2)/�1(Ē1)F 2

1 (Ē1) is minimized or maximized, depending on whether we are

considering a putative signal or constraint. Thus comparisons of rates at two experiments

may then be simply compared by taking ratios of CT with the form factor evaluated at the

conservative value Ē,

R2 ⇥
�2(Ē2)F 2

2 (Ē2)

�1(Ē1)F 2
1 (Ē1)

C(2)
T

C(1)
T

M (1)
T

M (2)
T

µ2
2

µ2
1

R1 . (15)

In order to determine what comparisons can be made between experiments, we must ex-

amine the relevant velocity space they probe. We re-emphasize that the signal at energy

Elow < E < Ehigh is sensitive to all particles with velocity greater than vmin(E,MN ,M�)

through the integral g(vmin). A separate experiment with threshold Ẽ will o�er constraints

independent of astrophysics if the resulting minimum velocity ṽ < v2. The optimal limits are

reached when ṽ < v1. We illustrate this in Fig. 1 for an ensemble of experiments, some with
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T where the ra-

tio �2(Ē2)F 2
2 (Ē2)/�1(Ē1)F 2

1 (Ē1) is minimized or maximized, depending on whether we are

considering a putative signal or constraint. Thus comparisons of rates at two experiments

may then be simply compared by taking ratios of CT with the form factor evaluated at the

conservative value Ē,

R2 ⇥
�2(Ē2)F 2

2 (Ē2)

�1(Ē1)F 2
1 (Ē1)

C(2)
T

C(1)
T

M (1)
T

M (2)
T

µ2
2

µ2
1

R1 . (15)

In order to determine what comparisons can be made between experiments, we must ex-

amine the relevant velocity space they probe. We re-emphasize that the signal at energy

Elow < E < Ehigh is sensitive to all particles with velocity greater than vmin(E,MN ,M�)

through the integral g(vmin). A separate experiment with threshold Ẽ will o�er constraints

independent of astrophysics if the resulting minimum velocity ṽ < v2. The optimal limits are

reached when ṽ < v1. We illustrate this in Fig. 1 for an ensemble of experiments, some with

6

Halo model independence
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FIG. 2: The extracted CoGeNT signal (left and bottom axes) and the rate it is mapped to on a

Xenon target (top and right axes) for m� = 10GeV (rescaled by form factors at the corresponding

energies F 2
Xe(E

Xe
R ), F 2

Ge(E
Ge
R ) � 1). The dashed line is the lower bound on the rate at low energies,

using the monotonically falling nature of g(vmin).

discussion in [41]), and thus the value at the low end of this range is a lower bound for

lower values of v. This is not especially relevant for our analysis here, but would be likely

relevant in situations where the other experiments could probe lower energies as well.

Since we will compare this with the XENON10 experiment, we choose fp = 1 and fn = 0,

which is motivated from light mediators mixing with the photon, since it will give the most

lenient bounds. Using (11) we can map the CoGeNT signal onto a Xenon target, and study

the signal that would arise at XENON10. We show this in figure 2.

What is remarkable about this figure is that – once the CoGeNT signal is specified – the

expected rate on a Xenon target is completely unambiguous (and similarly on any other

target). This involves no assumptions about the halo escape velocity, velocity dispersion, or

even the assumption that the velocity distribution is Maxwellian, but requires only an input

of the WIMP mass.

After taking into account exposure and the detector e�ciencies (MIN, MED and MAX

cases described above) we can predict the total number of events predicted by the CoGeNT

13

mχ = 10 GeV

CoGeNT and XENON10
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Figure 2. The CDMS-Si and XENON10/100 results translated into vmin-space. The upper panels
show the case m� = 9 GeV for two choices of binning. In the left (right) panel the bin width is 2 keV
(3 keV). The choice of binning does not alter our conclusions. For all the cases considered, the region
of vmin-space probed by CDMS-Si is constrained by XENON10/100.

(upper panels) and m� = 7GeV and m� = 11GeV (lower left and lower right panels respec-
tively). Binning the data introduces a certain arbitrariness so we check the robustness of our
results by considering two choices of the bin width: 2 keV and 3 keV for the upper left and
right panels of Fig. 2 respectively. The inferred values for g̃(v

min

) agree well, implying that
our conclusions are largely independent of the choice of bin width. In all cases, the highest
bin is in significant tension with the XENON100 bound except for the case m� = 7GeV,
corresponding to the least constrained mass in Fig. 1.

We observe from Fig. 2 that all three experiments probe essentially the same region
of v

min

-space. This suggests that it will not be possible to significantly improve the consis-
tency of CDMS-Si and XENON10/100 by varying astrophysical parameters. To explicitly
demonstrate that this is so, we consider two variations in astrophysical parameters. In the
left panel of Fig. 3 we keep the usual Maxwell-Boltzmann velocity distribution but choose
v
0

= 250 km/s and v
esc

= 650 km/s, which are at the upper end of the allowed range for these
parameters (see e.g. [17] and references within). Although we see that the CDMS-Si region
and XENON10/100 bounds move towards lower masses by ⇠ 1GeV, the tension between the
experiments remains essentially unchanged. As a more radical modification we consider the

– 7 –

A new plot
XENON100: New Spin-Independent Results

Upper Limit (90% C.L.) is 2 x 10-45 cm2  for 55 GeV/c2 WIMP

Wednesday, July 18, 2012

Frandsen et al.
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Strong CP problem

QCD Lagrangian can be augmented with the term

θ

32π2
trϵαβγδF

αβF γδ.

! Violates CP. Total derivative but contributes
through instantons.

! Leads to neutron electric dipole moment,
dn ∼ 10−16θecm. Present experimental limit
is dn < 6 × 10−16ecm, thus θ < 10−10.

! Strong CP problem: why is θ so small? One
solution is PQ symmetry. Spontaneously
broken at fa, results in a Goldstone boson
called the axion. Below the symmetry
breaking scale,

L =
1
2
(∂a)2 +

1
32π2

a

f
F F̃ + . . .

! The potential for the axion is flat, except for
effects coming from QCD instantons. These
tilt the potential and drive a = faθeff to zero.

4

Axions

Axion is goldstone boson of spontaneously broken U(1)

Picks up a mass from QCD instantonsBelow ΛQCD,

L =
1
2
(∂a)2 − m2

af2
a (1 − cos a/fa)

and m2
af2

a ∼ m2
πf2

π
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Figure 1: Exclusion ranges as described in the text.
The dark intervals are the approximate CAST and
ADMX search ranges. Limits on coupling strengths are
translated into limits on mA and fA using z = 0.56
and the KSVZ values for the coupling strengths. The
“Laboratory” bar is a rough representation of the ex-
clusion range for standard or variant axions. The “GC
stars and white-dwarf cooling” range uses the DFSZ
model with an axion-electron coupling corresponding to
cos2 β = 1/2. The Cold Dark Matter exclusion range
is particularly uncertain. We show the benchmark case
from the misalignment mechanism.
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Huh?

•Axions are made through the 
“misalignment mechanism”

•Can be CDM candidate 
despite mass <eV
•Search for in very different 
ways from WIMP DM



Axions start to oscillate when

Relic axions

! Dominant axion production is through
misalignment of the initial θ angle. Equation
of motion of axion,

ä + 3Hȧ + m2
a(T )a = 0

! Relic axion condensate forms when axions
begin to oscillate, 3H ≈ ma(T )

! Above ΛQCD instanton effects are suppressed,
potential is flat. A dilute instanton gas
calculation for T ≫ ΛQCD gives,

ma(T )
ma

= 0.018
(

ΛQCD

200MeV
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T
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ä + 3Hȧ + m2
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ä + 3Hȧ + m2
a(T )a = 0

! Relic axion condensate forms when axions
begin to oscillate, 3H ≈ ma(T )

! Above ΛQCD instanton effects are suppressed,
potential is flat. A dilute instanton gas
calculation for T ≫ ΛQCD gives,

ma(T )
ma

= 0.018
(

ΛQCD

200MeV

)1/2 (
ΛQCD

T

)4

7

Relic axions

! Dominant axion production is through
misalignment of the initial θ angle. Equation
of motion of axion,
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FIG. 1: (color) (a) Simple photon regeneration. (b) Resonant
photon regeneration, employing matched Fabry-Perot cavi-
ties. The overall envelope schematically shown by the thin
dashed lines indicates the important condition that the axion
wave, and thus the Fabry-Perot mode, in the conversion mag-
net must follow that of the hypothetically unimpeded photon
wave from the Fabry-Perot mode in the production magnet.
Between the laser and the cavity is the injection optics (IO)
which manages mode matching of the laser to the cavity, im-
poses RF sidebands for reflection locking of the laser to the
cavity, and provides isolation for the laser. The photon detec-
tors are also preceded by matching and beam-steering optics.
Not shown at all is the electro-optical system required to lock
the two cavities together in frequency.

Fig. 1a shows the axion-photon regeneration exper-
iment as usually conceived. If P0 is the power of the
laser, the power of the axion beam traversing the wall is
p P0 where p is the conversion probability in the magnet
on the LHS of Fig. 1a. Let p′ be the conversion probabil-
ity in the magnet on the RHS. The power in regenerated
photons is P = p′ p P0.

Fig. 1b shows the two improvements we propose for
the experiment. The first improvement is to build up the
power on the photon-to-axion conversion side of the ex-
periment using a Fabry-Perot cavity, as illustrated. Pho-
tons in the production cavity will then convert to ax-
ions with probability p for each pass through the cavity.
The standing wave in the production cavity is the sum of
left-moving and right-moving components of equal am-
plitude. If the reflectivity of the cavity mirrors is given
by

R = 1 − η (5)

and the power of the laser is P0, the power of the right-
moving wave in the production cavity is 1

η P0. Therefore
the axion power through the wall in the setup of Fig. 1b
is 1

η p P0. Assuming the lasers in Fig. 1a and Fig. 1b
have the same power, the axion flux is increased by the
factor 1

η .
Increasing the axion production rate, and thus the pho-

ton regeneration rate, by building up the optical power in
the first magnet is not a new idea. In fact, the only pho-
ton regeneration experiment performed and published to

date, by Ruoso et al. utilized an “optical delay line,” i.e.,
an incoherent cavity encompassing the production mag-
net, causing the laser beam to traverse the magnet 200
times before exiting. With relatively modest magnets
(4.4 m, 3.7 T each), a limit of gaγγ < 7.7 × 10−7 GeV−1

was set [9].
There is substantial gain from building up the laser

power in the axion production magnet; however, it is
immaterial whether one “recycles” the photons incoher-
ently, as in an optical delay line, or coherently, as in a
Fabry-Perot (FP) cavity. In contrast, the coherent case
alone can provide a large additional gain in sensitivity for
photon regeneration. Thus, the second improvement is to
also install a Fabry-Perot cavity on the regeneration side
of the experiment, making a symmetric arrangement, as
illustrated in Fig. 1b. When the second FP cavity is
locked to the first, the probability of axion to photon
conversion in the second FP cavity is 2

η′ p′ = 2
π F ′ p′

where F ′ is the finesse of the cavity, and p′ is the axion-
to-photon conversion probability in the absence of the
cavity. The calculation which yields this result is out-
lined in the next paragraph.

The cavity modes are described by

A⃗n = An(t)ŷ sin(
nπ

L
z) (6)

where ẑ is in the direction of light propagation and ŷ is a
transverse direction. The dependence of the mode func-
tion on the transverse coordinates (x and y) is neglected
here, but will be discussed later. Using Eqs (2) one can
show that, in the presence of an axion beam travelling
through the cavity in the z-direction

a(z, t) = A sin(kaz − ωt) , (7)

the coefficients An(t) satisfy

(
d2

dt2
+ γ

d

dt
+ ω2

n)An(t) = C sin(ωt −
qL

2
) , (8)

where ωn = nπ√
ϵL

and

C =
1

ϵ
gωB0A

2

Lq
sin(

qL

2
) . (9)

As before, q = ka − kn =
√

ω2 − m2
a − nπ

L is the momen-
tum transfer. When the production cavity and the regen-
eration cavity are tuned to the same frequency, ωn = ω
for some n. Then

A⃗n = ŷ
C

ωγ
sin(

nπ

L
z) sin(ωt −

qL

2
−

π

2
) , (10)

up to transients. The energy stored in the cavity is
E = 1

4SLA2ϵω2 where A = C
ωγ and S is the cross-

sectional area of the cavity mode. The power emitted
by the cavity is P = γE, assuming that there are no
losses other than by transmission through the mirrors.
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However, this combination of mA and GAγγ does not exclude

plausible axion models.

IV.3 Microwave cavity experiments

The limits of Figure 1 suggest that axions, if they exist,

provide a significant fraction or even perhaps all of the cos-

mic CDM. In a broad range of the plausible mA range for

CDM, galactic halo axions may be detected by their resonant

conversion into a quasi-monochromatic microwave signal in a

high-Q electromagnetic cavity permeated by a strong static B

field [5,76]. The cavity frequency is tunable, and the signal is

maximized when the frequency is the total axion energy, rest

mass plus kinetic energy, of ν = (mA/2π) [1 + O(10−6)], the

width above the rest mass representing the virial distribution

in the galaxy. The frequency spectrum may also contain finer

structure from axions more recently fallen into the galactic

potential and not yet completely virialized [77].

Figure 3: Exclusion region reported from the
microwave cavity experiments RBF and UF [78]
and ADMX [79]. A local dark-matter density
of 450 MeV cm−3 is assumed.
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Axion searches
Microwave cavities, take advantage of axion-photon 
coupling








