Dark Matter Intro

Patrick Fox

‡ Fermilab

"Roadmap"

- The story of DM
 - Evidence
 - Basic properties
- Relic abundance
 - Thermal relics/WIMPs
 - Non-WIMPs
 - Non-thermal relics
- Indirect Detection
- Direct Detection
- DM@Colliders
- DM self interactions
- Conclusions

"Roadmap"

- The story of DM
 - Evidence
 - Basic properties
- Relic abundance
 - See Mina's lectures next week
- Detection
- Direct Detection
- DM@Colliders
- DM self interactions
- Conclusions

"Roadmap"

- The story of DM
 - Evidence
 - Basic properties
- Relic abundance
- See Mina's lectures next week ar relics
- DN See Rick's lectures next week
 DN

 - DM Jeit interactions
 - Conclusions

Extra stuff

Extra stuff

- •23% of universe energy/matter is a new type of (non-baryonic) matter
- 73% is a new type of energy (cosmological constant)
 SM is 4%

Coma Cluster

90% of the matter in the cluster doesn't shine

HW: predict the shape of this curve

Something invisible is holding stars in orbit

Hot plasma of hydrogen atoms and photons, and DM and cc

- CMB well described by ~10 parameters
- Linear modes, caused by gravitational instabilities of coupled baryon-photon fluid, seeded by 10⁻⁵ fluctuations
- Adiabatic, gaussian
- Requires on DM, baryons and dark energy
- Polarization, higher ℓ , black body spectrum, BAO,...

Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light element abundance

Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light element abundance

Big Bang Nucleosynthesis

Hot soup of protons and neutrons, can predict light element abundance $\sim 5\%$ in baryons

BBN@LO

Freeze out occurs when weak interactions decouple

$$G_F^2 T^5 \sim H \sim \frac{T^2}{M_{pl}}$$

 $\frac{n}{p} = \frac{1}{6} \xrightarrow{\tau_n} \frac{1}{7}$

Neutron: Proton ratio determined by thermodynamics

$$\frac{n}{p} \sim e^{-\Delta m/T} \sim 1/6$$

Reaction rates determined by single parameter

$$\eta_b = \frac{n_b}{n_\gamma} \sim 6 \times 10^{-10}$$

• BBN begins when temp. far enough below Deuterium b.e.

$$\eta^{-1} e^{-\Delta_D/T} \sim 1$$

• At L.O. all nuclei are H or He

$$Y_{\rm p} = \frac{2(n/p)}{1+n/p} \simeq 0.25$$

The Bullet Cluster

The Bullet Cluster

The Bullet Cluster

Recap on DM's (gross) properties

- •DM makes up 23% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- •Does not interact much with itself $\frac{\sigma_{\chi\chi}}{m} \lesssim 3 \,\mathrm{GeV}^{-3}$
- •Does not couple to massless particle $^{m_{\chi}}$
- •Was non-relativistic at time of CMB

Is long lived

Decay Channel	au Lower Limit	Experiment
$q\overline{q}$	$10^{27} { m s}$	PAMELA antiprotons
e^+e^- or $\mu^+\mu^-$	$2 \times 10^{25} \mathrm{s} \left(\frac{\mathrm{TeV}}{m_{\mathrm{DM}}} \right)$	PAMELA positrons
$ au^+ au^-$	$10^{25} \mathrm{s} \left(1 + \frac{\mathrm{TeV}}{m_{\mathrm{DM}}}\right)$	EGRET + PAMELA
WW	$3 \times 10^{26} {\rm s}$	PAMELA antiprotons
$\gamma\gamma$	$2 \times 10^{25} \mathrm{s}$	PAMELA antiprotons
$\nu\overline{\nu}$	$10^{25} \text{ s} \left(\frac{m_{\rm DM}}{\text{TeV}}\right)$	AMANDA, Super-K

Recap on DM's (gross) properties

- •DM makes up 23% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- Does not interact much with itself
- •Does not couple to massless particle $^{m_{\chi}}$
- Was non-relativistic at time of CMB
 Is long lived

Decay Channel τ Lower Limit Experiment 10^{27} s $q\overline{q}$ **PAMELA** antiprotons $\overline{2 \times 10^{25} \text{ s}} \left(\frac{\text{TeV}}{m_{\text{DM}}}\right)$ e^+e^- or $\mu^+\mu^-$ PAMELA positrons $\overline{10^{25} \mathrm{s} \left(1 + \frac{\mathrm{TeV}}{m_{\mathrm{DM}}}\right)}$ $\tau^+\tau^-$ EGRET + PAMELA $3 \times 10^{26} \text{ s}$ **PAMELA** antiprotons WW 2×10^{25} s **PAMELA** antiprotons $\gamma\gamma$ $10^{25} \text{ s} \left(\frac{m_{\rm DM}}{T_{\rm eV}}\right)$ AMANDA, Super-K $\nu\overline{\nu}$

 $\frac{\sigma_{\chi\chi}}{\simeq} \lesssim 3 \,\mathrm{GeV}^{-3}$

No such particle exists in the SM

So far all probes have been gravitational in nature

Neptune discovered by wobble in orbit of Uranus —original DM!

Advance in Perihelion of Mercury needed new physics (general relativity) to explain it. (Originally thought to be planet Vulcan!)

What about other interactions?

So far all probes have been gravitational in nature

What about other interactions?

Relic abundance

DM as a thermal relic

If there are DM-SM couplings leading to annihilation/ production, DM will be produced in the hot early universe

 $T \gg m_{\chi}: \ n_{\chi}^{eq} \sim T^3 \qquad \qquad \chi \chi \leftrightarrow ff$

$$T \lesssim m_{\chi}: \ n_{\chi}^{eq} = g\left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-m_{\chi}/T} \qquad \chi\chi \to f\bar{f}$$

Universe is expanding while this is happening Need to solve Boltzmann equation

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{eq}^2 \right)$$
$$H = \frac{\dot{a}}{a} \sim \frac{T^2}{M_{pl}}$$

Boltzmann equation

Useful to define $Y = \frac{n}{s}$ and $x = m_{\chi}/T$

$$s = \frac{2\pi^2}{45}g_*T^3 \qquad \qquad sa^3 = \text{const}$$

HW: Derive this

$$\frac{dY}{dx} = -\sqrt{\frac{\pi}{45G_N}} \frac{g_*^{1/2} m_{\chi}}{x^2} \langle \sigma v \rangle \left(Y^2 - Y_{eq}^2 \right)$$

Some examples

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{eq}^2 \right)$$

 $\langle \sigma v \rangle = const$

Freeze out occurs when

$$\left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-m_{\chi}/T} \sim \frac{T_f^2}{M_{pl}\langle\sigma v\rangle}$$

Numerical solution show x=20..30

$$\rho_c = \frac{3H^2}{8\pi G_N} = 8 \times 10^{-47} h^2 \text{GeV}^{-4}$$

$$\Omega_{\chi} = \frac{m_{\chi} n_0}{\rho_c} \sim \frac{T_0^3}{\rho_c} \frac{x}{M_{pl} \langle \sigma v \rangle}$$

Some examples

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v \rangle \left(n_{\chi}^2 - n_{eq}^2 \right)$$

 $\langle \sigma v \rangle = const$

Freeze out occurs when

$$\left(\frac{m_{\chi}T}{2\pi}\right)^{3/2} e^{-m_{\chi}/T} \sim \frac{T_f^2}{M_{pl}\langle\sigma v\rangle}$$

Numerical solution show x=20..30

$$o_c = \frac{3H^2}{8\pi G_N} = 8 \times 10^{-47} h^2 \text{GeV}^{-4}$$

$$\Omega h^2 \approx 0.1 \left(\frac{m/T}{20}\right) \left(\frac{g_*}{80}\right)^{-1} \left(\frac{3 \times 10^{-26} \text{cm}^2 \text{s}^{-1}}{\sigma v}\right)$$

HW: Repeat this for baryons. Why does there need to be an initial asymmetry? HW: Repeat for a state coupled to the Z. (The Lee-Weinberg bound)

WIMP

- DM interacts through weak (or weak scale) couplings
- Lee-Weinberg and Unitarity constrain mass range
 - •~1 GeV —~10 TeV

SD

Usually consider a thermal relic

WIMP

- DM interacts through weak (or weak scale) couplings
- Lee-Weinberg and Unitarity constrain mass range

•~1 GeV —~10 TeV

SD

Usually consider a thermal relic

Hidden sector DM

- DM interacts through *new* mediators
 - "dark photon", U-boson, Z', secluded mediator,....
 - dark Higgs
 - pseudo scalars, ALPs
 - •
- Portal interactions
- Thermal relic, now can annihilate within the dark sector
- Allows for lighter DM
 - •~1 keV ~100 TeV
- Search for all dark sector particles
 - Direct, indirect, collider, self-coupling
Hidden sector DM

- DM interacts through *new* mediators
 - "dark photon", U-boson, Z', secluded mediator, $\dots^{\epsilon} \frac{16\pi^2}{16\pi^2} F'_{\mu\nu} B^{\mu\nu}_{Y}$ dark Higgs
 - dark Higgs
 - pseudo scalars, ALPs
 - •
- Portal interactions
- Thermal relic, now can annihilate within the dark sector
- Allows for lighter DM
 - •~1 keV ~100 TeV
- Search for all dark sector particles
 - Direct, indirect, collider, self-coupling

Hidden sector DM

- DM interacts through *new* mediators
 - "dark photon", U-boson, Z', secluded mediator, $... \frac{\epsilon}{16\pi^2} F'_{\mu\nu} B^{\mu\nu}_{Y}$ dark Higgs
 - dark Higgs $\phi |H|^2 + |\phi|^2 |H|^2$
 - pseudo scalars, ALPs
 - •
- Portal interactions
- Thermal relic, now can annihilate within the dark sector
- Allows for lighter DM
 - •~1 keV ~100 TeV
- Search for all dark sector particles
 - Direct, indirect, collider, self-coupling

Hidden sector DM—interesting dynamics

Hidden sector DM—thermal relics

[Pospelov, Ritz, Voloshin]

Decouples direct detection from thermal history

Light DM and CMB $p_{CMB} = f_{off} \frac{\langle \sigma v \rangle_{T \sim eV}}{m_{\chi}} < 3.5 \times 10^{-11} \text{GeV}^{-3}$

P-wave (Majorana fermions), asymmetric, co-annihilation w/ suppressed species

Hidden sector DM—thermal relics

Leads to interesting changes in cosmology

DM-SM elastic scatter

Hidden sector DM—thermal relics

Leads to interesting changes in cosmology

DM-SM elastic scatter

Non-thermal relics

- Late decaying massive particle e.g. modulus
- Asymmetric DM

[See Petraki and Volkas review]

- Similar to baryon-antibaryon asymmetry
- Explains $\,\Omega_{\rm DM}\simeq 5\,\Omega_{\rm VM}$
- Decouples cosmological history from possible signals
- Indirect detection?
- Many examples of "cogenesis"
- Misalignment mechanism to produce ultralight (<eV) cold relic
 - QCD relic

- •DM makes up 23% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- Does not interact much with itself
- •Does not couple to massless particle
- •Was no relativistic at time of CMB
- Is long lived
- IF DM is a thermal relic:
- •A weak scale annihilation x-sec gives correct abundance •Mass range is $10~{\rm MeV}\lesssim m_\chi\lesssim 70~{\rm TeV}$

- •DM makes up 23% of the universe
- •Gravitates like ordinary matter, but is non-baryonic
- •Is dark i.e. neutral under SM (not coloured, or charged)
- Does not interact much with itself
- •Does not couple to massless particle
- Was no relativistic at time of CMB
 Is long lived

IF DM is a thermal relic:

•A weak scale annihilation x-sec gives correct abundance •Mass range is $10 \text{ MeV} \lesssim m_\chi \lesssim 70 \text{ TeV}$

WIMPs and BSM physics

- •Higgs hierarchy problem "predicts" new states at weak scale with/without SM charge
- •Flavour constraints require high scale (1000 TeV) suppression of FCNC operators
- •"New physics parity"
- •LPOP often has possibility to be a DM WIMP

•WIMPs e.g. SUSY neutralino, KK-mode of UED, techni-baryons, lightest T-odd little Higgs particle, LPOPs....

Particle theories

[Feng-US Cosmic Visions White papers]

sub-keV DM

- Very light DM is bosonic
- Heavier than $10^{-22} \,\mathrm{eV}$
- More appropriately thought of as semiclassical wave, large n
- Or, absorption of DM, linear coupling to matter

[US Cosmic Visions White papers]

Axionic DM best thought of as a coherent oscillation with high occupancy

Direct Detection

Dark Matter Direct Detection

(the theorist's perspective)

Dark Matter Direct Detection

An exciting time, many experiments

			100	150	1274		150		1.07	2010	100		100	12.0	1000	1070	10.0	
nydrogan 1																		1 neiturn 2
L Ú L																		Lie
H H																		не
1.0079	hand here												h ann a	a a data ta	elization		Fundan	4.0026
3	d der gi lumi												5	6	7	8 CXYCen	9	10
1.1	Do												Ď	Ċ	N	Ó	Ē	No
- L . L	Бе												D		IN	0	E .	ne
6.941 sedium	9.0122 magnesium												10.811 aluminium	12.011 slicon	14,007 rbosphorus	15,999 suffur	18,998 chiorine	20 180
11	12												13	14	15	16	17	18
Na	Ma												ΔI	Si	D	S	CL	Ar
INA	ivig													51		9	UI	AI
22.990	calcium		scandium	titanium	vanadium	chtomium	manganese	iren	filedco	rickel	copper	zine	gallum	german um	30.974 arsenic	selenium	35.453 bromine	39 S48 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	CII	7n	Ga	Ge	Δs	Se	Br	Kr
20.002	40.078		41.058	17 967	50.942	51.008	54 022	55.9.45	58.032	52,802	82.546	85.30	60.722	72.61	74.922	79.06	79.914	02.00
rubidium	strentum	1	ythrum	zirconium	niobum	molybdenum	technetium	ruthenium	rhodum	alladium	SIVER	cedmium	ndum	30	antmony	telurium	odina	xenan
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te		Xe
85.468	87.52		\$3,905	91.224	92.908	95.94	1981	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126,90	131.29
caesium	muhed		lutet u m	hafnlum	tantalum	tungsten	rhen um	os mium	Indium	p atinum	gold	marcury	thallum	lead	tismuth	poloritum	astat ne	noter
55	56	57-70	. 71	72	73	74	75	76	17	78	79	80	81	82	83	84	85	86
CS	Ba	×	Lu	Ht	Та	W	Re	Os	Ir	Pt	Au	Hq	TL	Pb	Bi	Po	At	Rn
132.91	137-33		174.97	178.49	180.95	153.84	186.21	190.23	197.22	195.68	196.97	200.59	204.38	207.2	208, 98	[205]	[210]	[222]
francium 07	radi.m oo	90.402	lawrenic um 4.02	ruthe fordium	dubnium 405	seatorgium 406	bohrum 407	hassium 4 0.9	meilnerium 1.00	ununrilum 110	munununu	ununbium 442		me bauprenu 4.4.4				
57	D	03-102	103	D4	DIa	00	DI	100	B.4.4		I Lawrence			114				
Fr	ка	* *	Lr	RT	Db	Sg	Bn	HS	Ινιτ	Uun	uuu	uup		Uuq				
[223]	[226]		[262]	[261]	[262]	[256]	[264]	[269]	[263]	[271]	[272]	[277]		[283]				
* mmt	hanida	a a si a s	57	58	59	60	61	62	63	64	65	66	67	erti im 68	69	70		
Lant	nanide	series	1.0	Co	Dr	Ma	Dm	Cm	Eu	Gd	Th	Dv	La	Er	Tim	Vh		
			La	Ce	P1	NG	FIII	SIII	Eu	Gu	ai	Dy	по		1111	1 D		
			138.91 actinium	140.12 therium	140.91 protactinium	144.24 uranium	[145] neolunium	150.36 al.donium	151 95 americium	157.25 curiure	158.93 berkelum	152.50 californum	164.93 einsteinium	167.26 fermium	163.93 mendelevium	1/3 04 pote jum		
* * Actinide series			89	90	91	92	93	94	95	96	97	98	99	100	101	102		

[243]

Np Pu Am Cm Bk

12471

[252]

Cf

[251]

Es Fm Md

No

[259]

**Actinide series

Ac

Th

222.04

Pa

231.04

U

239.08

An exciting time, many experiments

hydrogan	-		10	101	100	10	100		107	202	2000		800	225	10.00	5170		helum
1																		2
H																		не
1.0079 Ittilum	beryl lum	i i										1	boton	carbon	ritrogen	czycen	fuorine	4.0026 neon
3	4												5	6	7	8	9	10
Li	Be												в	С	N	0	F	Ne
6.941	9.0122 magazium												10.811	12.011	14.007 absorbanis	15,999 av/0.v	18,998 abadae	20 180
11	12												13	14	15	16	17	18
Na	Ma												ΔΙ	Si	P	S	CL	Δr
22,890	24,505												26.902	28.085	30.974	32.065	35.453	39.947
notassium 40	calcium		scandium	titanium	vanadium	chromium 24	manganese	inn	tiedco.	rickel	colber	20	gallum	german um	arsenic	selenium	bromine	krypton
19	20		21 C -	T :	23	24	25	20	<u> </u>	28	29	30	31 C -	32 C	33	34 C	35	36
ĸ	Ca		20	11	V	Cr	win	ге	CO	NI	Cu	Zn	Ga	Ge	AS	Se	Br	Kr
39.098 rubidium	40.078 strantum		44.958 vtinum	47.867 zirconium	50.942 niobum	51,996 molybdenum	54,938 technetium	55.845 ruthenium	58 933 rhod u m	58,693 calledium	63.546 si ver	65.39 cadmium	69.723 ndum	72.61	74,922 ant mony	78.96 tclurium	79,934 odina	83.80 Xeron
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aa	Cd	In	Sn	Sb	Te		Xe
85.468	87.82		\$3.905	91.224	92.908	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126,90	131.29
caes um	bart.m	57.70	lutetum 74	tatium 79	tantalum 72	tungsten 7.4	rhan um	os mium 78	iridium 77	p atinum 79	gold 70	Instrucy 90	thallum 94	lead 92	tismuth 02	poloritum	astatine o c	ration 96
Co	Do	V	1.1	LIF	Ta	IAI	Da	00	line .	D4	Δ		TI	Dh	D:	De	A.4	Dm
US	ва	\mathbf{x}	Lu	HI	Ta	VV	Re	US	Ir	Pt	Au	нg	11	PD	ы	PO	Αί	Rn
132,91 francium	137.33 radium		174 97 lawrenicium	178,49 ruthe fordium	180.95 dubnium	153,84 seaborgium	186.21 bohrum	190.Z3 hassium	192.22 meitnerium	195.68 Lounrillum	196.97 unununium	200.59 ununbium	204.38	207.2 unenquadiem	208.98	209	[210]	722
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	$\star \star$	Lr	Rf	Db	Sq	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[263]	[271]	[272]	[277]	ļ, ļ	[283]				
			lanthanum	perium	praseocymium	neodymium	promethium	samarium	europium	gadolinium	terblum	dyspiostum	tointum	erbium	thullum	ytterbium	í -	
* Lanth	nanide	series	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb		
			138.91	140.12	140.91	144.24	[145]	150.36	151 95	157.25	158.93	152.50	164.93	167.26	163.93	173 04		

95

Am

[243]

96

Cm

[247]

97

Bk

[247]

98

Cf

[251]

99

Es

[252]

100

Fm

101

Md

102

No

[259]

**Actinide series

89

Ac

90

Τh

222.04

92

U

238.08

91

Pa

231.04

93

Np

[237]

94

Pu

[264]

Aim: to understand everything that XENON100: Spintlockpin dent Results

Aim: to understand everything that goes into this plot

Recoil rate as a function of recoil

energy

Number of targets in experiment

Depends on how much DM is around...

$$\frac{dR}{dE_R} = \frac{N_T \rho}{m_\chi} \int_{v_{\min}}^{v_{\max}} d^3 v f(v(t)) \frac{d\sigma |v|}{dE_R}$$

Depends on how much DM is around...

...and how it's moving...

...and how it interacts with nuclei.

$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$

Differential cross section

Form factor (DM)

$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$

Cross section

$$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$$

$$\sigma^{\mathrm{SI}} = \frac{[Zf_p + (A - Z)f_n]^2}{f_p^2} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \sigma_p^{\mathrm{SI}}$$

$$\frac{d\sigma}{dE_R} = F_N^2(E_R)F_\chi^2(E_R)\frac{m_N}{\mu v^2}\sigma_N$$

$$\sigma^{\mathrm{SI}} = \frac{[Zf_p + (A - Z)f_n]^2}{f_p^2} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \sigma_p^{\mathrm{SI}}$$

$$\sigma^{\rm SD}S(E_d) = \frac{4\mu_{\chi N}^2 \pi}{3\mu_{\chi p}^2 a_p^2 (2J+1)} [a_0^2 S_{00}(q) + a_0 a_1 S_{01}(q) + a_1^2 S_{11}(q)] \sigma_p^{\rm SD}$$
Of course, don't actually measure DM recoils directly

- In reality also have to include backgrounds and combine with detector effects
- e.g. energy resolution, quench factors, target composition, deadtime etc etc

Fundamental basis for superior rejection

Kinematics

Minimum speed DM must have to give recoil energy Er

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu_{N\chi}^2}}$$

Kinematics

Minimum speed DM must have to give recoil energy Er

$$v_{min} = \sqrt{\frac{m_N E_R}{2\mu_{N\chi}^2}}$$

Nuclear Physics

The meet of an attack of a farmer of 101

Holm density μ from (4.10) (4.11), $\alpha = 0$

<u>H-exchange</u> $\lambda S^2 |h|^2$

$$\sigma_p \sim \frac{\lambda^2 v^2}{16\pi m_h^4} \left| \langle p | \sum y_q \bar{q}q | r \rangle \right|^2 \frac{m_p^2}{(m_\chi + m_p)^2} \approx \lambda^2 \left(\frac{100 \text{ GeV}}{m_\chi} \right)^2 \times 10^{-43} \text{ cm}^2$$

Annual Modulation Another Way:

DAMA uses this to eliminate background, other expts. can look at modulation once they acquire enough data

Annual Modulation Another Way:

DAMA uses this to eliminate background, other expts. can look at modulation once they acquire enough data

Annual Modulation Another Way:

DAMA uses this to eliminate background, other expts. can look at modulation once they acquire enough data

In galactic frame:

In Earth's frame:

$$f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-v^2/v_0^2}$$

 $(\pi v_0^2)^{3/2}$ 498 km/s $\leq v_{esc} \leq 608$

 $v_E \approx 227 + 14.4 \cos\left[2\pi \left(\frac{t-t_0}{T}\right)\right] \quad t_0 = \text{June } 2^{\text{nd}}$

In galactic frame:

$$f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-v^2/v_0^2}$$

 $v_E \approx 227 + 14.4 \cos\left[2\pi \left(\frac{t-t_0}{T}\right)\right]$

In Earth's frame:

$$f(\vec{v}, \vec{v}_E) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-(\vec{v} + \vec{v}_E)^2/v_0^2}$$

In galactic frame:

$f(v) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-v^2/v_0^2}$

$v_E \approx 227 + 14.4 \cos\left[2\pi \left(\frac{t-t_0}{T}\right)\right]$

In Earth's frame:

$$f(\vec{v}, \vec{v}_E) = \frac{1}{(\pi v_0^2)^{3/2}} e^{-(\vec{v} + \vec{v}_E)^2/v_0^2}$$

Many things modulate on a year timescale:

Many things modulate on a year timescale: •temperature

Many things modulate on a year timescale: •temperature •water loading

- Many things modulate on a year timescale:
- •temperature
- •water loading
- radon abundance

Many things modulate on a year timescale:

- •temperature
- •water loading
- •radon abundance
- •ice-cream sales....

Many things modulate on a year timescale:

- •temperature
- •water loading
- •radon abundance
- •ice-cream sales....

But, very few line up year-on-year with June 2nd

DM models pre-DAMA

DM models pre-DAMA

DM models pre-DAMA

- •Low mass dark matter with channelling, M~10 GeV
- Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- Low mass dark matter with channelling, M~10 GeV
 Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- Low mass dark matter with channelling, M~10 GeV
 Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- Low mass dark matter with channelling, M~10 GeV
 Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- Low mass dark matter with channelling, M~10 GeV
 Leptophilic DM
- Inelastic Dark Matter (iDM)
- •Form Factor Dark Matter (FFDM or MDDM)
- •Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

$$S = S_0 + S_m \cos\left[2\pi(t - t_0)/T\right]$$

- Low mass dark matter with channelling, M~10 GeV
 Leptophilic DM
- Inelastic Dark Matter (iDM)
- Form Factor Dark Matter (FFDM or MDDM)
- Exothermic DM (exoDM)
- •Resonant Dark Matter (rDM)

DM: a phenomenologist's playground

Explore the landscape of possible ways DM can interact with the SM

Experiments originally designed for a ~100 GeV SUSY WIMP, but there are many more possibilities

Thankfully many experiments and clever experimentalists

Light Dark Matter

- Motivated by fact that $\Omega_{\text{DM}} \sim 5~\Omega_{\text{b}}$
- If baryon and DM abundance related then expect DM to be (5-10) x proton mass
- Also, hard for direct detection because of thresholds,
- backgrounds, etc (ask Rick 😇)
Inelastic Dark Matter (iDM)

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

[Weiner and Tucker-Smith]

$$v_{min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{N\chi}} + \delta\right)$$

 $m_{\chi} - m_{\chi'} = \delta \sim 100 \,\mathrm{keV}$

- •Requires "large" momentum exchange to upscatter
- •Favours high velocity tail of MB distribution
- Increased modulation
- •Prefers heavy targets e.g. iodine, xenon, tungsten,..
- •Recoil spectrum has a peak

All of the above helped to make DAMA consistent with CDMS, predicts events at other heavy element detectors

Inelastic Dark Matter (iDM)

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

$$v_{min} = \sqrt{\frac{1}{2m_N E_R}} \left(\frac{m_N E_R}{\mu_{N\chi}} + \delta\right)$$

[Weiner and Tucker-Smith]

 $m_{\chi}-m_{\chi'}=\delta\sim 100\,{\rm keV}$

- •Requires "large" momentum exchange to upscatter
- •Favours high velocity tail of MB distribution
- Increased modulation
- •Prefers heavy targets e.g. iodine, xenon, tungsten,..
- •Recoil spectrum has a peak

All of the above helped to make DAMA consistent with CDMS, predicts events at other heavy element detectors

Exothermic DM (exoDM) [Graham, Harnik, Rajendran, Saraswat]

$$m_{\chi} - m_{\chi'} = \delta \sim -10 \,\mathrm{keV}$$

$$v_{\min} = \frac{1}{\sqrt{2m_N E_R}} \left| \frac{m_N E_R}{\mu_{N\chi}} + \delta \right|$$

Can deposit energy even at zero speed

- Decreased (but still some) modulation
- •Prefers light targets
- •Recoil spectrum has a peak

e/i/exo-DM

[Chang, Weiner, Pierce and Feldstein, Fitzpatrick, Katz]

$$\frac{dR}{dE_R} = \frac{N_T \, m_N \, \rho_\chi}{2 \, \mu_{N\chi}^2 \, m_\chi} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \, \frac{f(\vec{v}, \vec{v}_E)}{v} \, \sigma_N \, F^2(E_R)$$

DM has a form factor, dipole coupling to light gauge boson

Form Factor

- •Form factors suppress certain ranges of recoil energy
- •Works best with SD couplings, or non-standard velocity distributions e.g. via Lactea
- •Although suppresses events at other detectors still expect some signal
- •Peak in spectrum at non-zero recoil energy

[Chang, Weiner, Pierce and Feldstein, Fitzpatrick, Katz]

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \,\mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \, \frac{f(\vec{v}, \vec{v}_E)}{v} \, \sigma_N F^2(E_R)$$

DM has a form factor, dipole coupling to light gauge boson

Form Factor

- •Form factors suppress certain ranges of recoil energy
- •Works best with SD couplings, or non-standard velocity distributions e.g. via Lactea
- •Although suppresses events at other detectors still expect some signal
- •Peak in spectrum at non-zero recoil energy

A moment with the photon

Although DM is electrically neutral it can have higher electromagnetic moments e.g. EDM, MDM, quadropoles, anapole, charge radius,...

DM couples to nucleus through photon exchange

Leads to interesting momentum dependence e.g.

$$\frac{d\sigma_{EDM}}{dE_R} = \frac{1}{4\pi} \mathbf{d}_{\chi}^2 Z^2 e^2 \frac{(S+1)}{3S} \frac{1}{v_r^2} \frac{1}{E_R} |G_E(\boldsymbol{q}^2)|^2$$

Typically assume fn~fp But different elements have different ratios of p/n Can remove some of the strongest constraints if

$$\frac{f_n}{f_p} \approx -0.7$$

Sospin dependent DM [Kurylov and Kamionkowski; Feng and Kumar]

$$\sigma^{\mathrm{SI}} = \frac{[Zf_p + (A - Z)f_n]^2}{f_p^2} \frac{\mu_{\chi N}^2}{\mu_{\chi p}^2} \sigma_p^{\mathrm{SI}}$$

Typically assume fn~fp But different elements have different ratios of p/n Can remove some of the strongest constraints if

$$\frac{f_n}{f_p} \approx -0.7$$

Resonant Dark Matter (rDM) [Bai and PJF]

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{v_{min}}^{v_{max}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

- Cross section is velocity dependent
- •In particular the velocity dependence is "resonant"
- •Picks out small range of velocities
- Increases modulation

•In our particular model realisation scattering is highly element dependent

Resonant Dark Matter (rDM) [Bai and PJF]

$$\frac{dR}{dE_R} = \frac{N_T m_N \rho_{\chi}}{2 \mu_{N\chi}^2 m_{\chi}} \int_{\boldsymbol{v_{min}}}^{\boldsymbol{v_{max}}} d^3 \vec{v} \frac{f(\vec{v}, \vec{v}_E)}{v} \sigma_N F^2(E_R)$$

- Cross section is velocity dependent
- •In particular the velocity dependence is "resonant"
- Picks out small range of velocities
- Increases modulation

•In our particular model realisation scattering is highly element dependent

How low can we go?

Billard, Figueroa-Feliciano, Strigari

Indirect Detection

Usually refers to DM annihilation/decay products in Galaxy (or extra-galactic), or from capture + annihilation in Sun, Earth,...

Not present for asymmetric DM

DM profiles

Debris flow, Lisanti et al.

Often plotted weighted by E²:

Diffusion-loss equation

$$\frac{\partial f}{\partial t} - \nabla \left(\kappa(E, \vec{x}) \nabla f \right) - \frac{\partial}{\partial E} \left(b_{loss}(E, \vec{x}) f + K_{EE} \frac{\partial f}{\partial E} \right) + \frac{\partial}{\partial z} \left(sgn(z) V_c f \right) = Q$$

Diffusion on magnetic inhomogeneities

Acceleration by shock waves

Propagation

- Assume steady state, simplifying geometry, cylindrical symmetry
- Diffusion coefficient determined by random magnetic fields

$$\kappa = \kappa_0 \left(\frac{E}{\text{GeV}}\right)^{\delta}$$

Losses due to synchrotron, ICS, spallation etc. Depends on distribution of magnetic fields, starlight, matter etc in galaxy
Many complexities, parameters. Use GALPROP

	Electrons or positrons		Antiprotons (and antideuterons)			
Model	δ	$\mathcal{K}_0 \; [\mathrm{kpc}^2/\mathrm{Myr}]$	δ	$\mathcal{K}_0 \; [\mathrm{kpc}^2/\mathrm{Myr}]$	$V_{\rm conv} {\rm [km/s]}$	$L [\mathrm{kpc}]$
MIN	0.55	0.00595	0.85	0.0016	13.5	1
MED	0.70	0.0112	0.70	0.0112	12	4
MAX	0.46	0.0765	0.46	0.0765	5	15

Dark Matter Indirect Detection

DM annihilates in our galaxy, or nearby dwarf galaxy e.g.

$\chi\chi \to p\bar{p}, e^+e^-$	Look for antimatter in cosmic rays, does not point back to source, limited range. PAMELA, AMS02, Fermi
$\chi\chi \to \nu\bar{\nu}$	Point back to source, low cross section. IceCube, ANTARES, Super-K
$\chi \chi o \gamma \gamma$	Point back to source, spectral line, low rate Fermi, HESS
$\chi \chi \to \mathrm{SM} \ \mathrm{SM}$ $\hookrightarrow \ldots + \gamma \gamma$	Point back to source, continuum with edge, backgrounds Fermi, HESS

Experiments

- Balloons, satellites, space stations
- Need magnetic field to distinguish charges

Experiments

Balloons, satellites, space stations

Simulation of DM photon signal in our galaxy

GCE (Gooperon)

Are the excess photons from the Galactic centre DM?

- •Source is spherical, with the expected radial dependence
- Cross section is close to thermal
- •Centred in the right place

- •Statistical significant, and Fermi-team sees it too
 - •Galactic centre is a confusing place
 - •Not as clear as a spectral line
 - •Milli-second pulsars (but we would have seen more, also spectrum different from those observed)
 - Look at other DM "bright spots"--dwarf galaxies
 - Cosmic ray anti-particles
 - •Correlated signals, LHC, direct detection
 - Interesting times ahead

Other "indirect" signals

[Figure by Joakim Edsjo]

Other "indirect" signals

[Figure by Joakim Edsjo]

Rate
$$\frac{dN}{dt} = \Gamma_{\text{capt}} - 2\Gamma_{\text{ann}} - \Gamma_{\text{evap}}$$

 $\Gamma_{\text{ann}} = \int n^2 \langle \sigma v \rangle$

$$n \sim e^{-m_{\chi}\phi(r)/T} \xrightarrow{\text{const.}\rho} n_0 e^{-r^2/r_{\chi}^2} \approx 0.01 R_{\odot} \sqrt{\frac{100 \text{ GeV}}{m_{\chi}}}$$
$$\Gamma_{ann} = N^2 \frac{\langle \sigma v \rangle}{2} \left(\frac{G_N m_{\chi} \rho_{\odot}}{3T_{\odot}}\right)^{3/2}$$
$$\pi_{ann} = \frac{\Gamma_{\text{capt}}}{2} \tanh^2 \left(\frac{t}{\tau}\right) \xrightarrow{t \gg \tau} \frac{\Gamma_{\text{capt}}}{2} \qquad \tau = \frac{1}{\sqrt{\Gamma_{\text{capt}} C_{ann}}}$$

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm capt}}{2} \tanh^2 \left(\frac{t}{\tau}\right) \stackrel{t \gg \tau}{\simeq} \frac{\Gamma_{\rm capt}}{2}$$

Rate

$$\frac{dN}{dt} = \Gamma_{\text{capt}} - 2\Gamma_{\text{ann}} - \Gamma_{\text{evap}}$$
only relevant
for DM<5 GeV

$$n \sim e^{-m_{\chi}\phi(r)/T} \xrightarrow{\text{const.}\rho} n_0 e^{-r^2/r_{\chi}^2} \approx 0.01 R_{\odot} \sqrt{\frac{100 \text{ GeV}}{m_{\chi}}}$$

$$\Gamma_{ann} = N^2 \frac{\langle \sigma v \rangle}{2} \left(\frac{G_N m_{\chi} \rho_{\odot}}{3T_{\odot}}\right)^{3/2}$$

 $\tau = \frac{1}{\sqrt{\Gamma_{\rm capt} C_{ann}}}$

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm capt}}{2} \tanh^2 \left(\frac{t}{\tau}\right) \stackrel{t \gg \tau}{\simeq} \frac{\Gamma_{\rm capt}}{2}$$

Rate

$$\frac{dN}{dt} = \Gamma_{\text{capt}} - 2\Gamma_{\text{ann}} - \Gamma_{\text{evap}}$$
only relevant
for DM<5 GeV

$$n \sim e^{-m_{\chi}\phi(r)/T} \xrightarrow{\text{const.}\rho} n_0 e^{-r^2/r_{\chi}^2} \approx 0.01 R_{\odot} \sqrt{\frac{100 \text{ GeV}}{m_{\chi}}}$$

$$\Gamma_{ann} = N^2 \frac{\langle \sigma v \rangle}{2} \left(\frac{G_N m_{\chi} \rho_{\odot}}{3T_{\odot}}\right)^{3/2}$$

$$\Gamma_{ann} = \frac{\Gamma_{\text{capt}}}{2} \tanh^2 \left(\frac{t}{\tau}\right) \xrightarrow{t \gg \tau} \frac{\Gamma_{\text{capt}}}{2}$$

$$\tau = \frac{1}{\sqrt{\Gamma_{\text{capt}} C_{ann}}}$$

Capture Rate

$$\Gamma_{\rm capt} = \frac{\rho_{\rm DM}}{M_{\rm DM}} \sum_{i} \sigma_{i} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} \ n_{i}(r) \int_{0}^{\infty} dv \ 4\pi v^{2} f_{\odot}(v) \frac{v^{2} + v_{\odot \rm esc}^{2}}{v} \wp_{i}(v, v_{\odot \rm esc})$$

- DM abundance
- Target abundance in Sun (typically dominated by H, He)
- Scattering cross section (SI, SD)
- DM speed distribution in Sun's frame
- Capture probability—favours slow moving DM

$$\wp_i(v, v_{\odot \text{esc}}) = \frac{1}{E \,\Delta_{\text{max}}} \int_{E \,\Delta_{\text{min}}}^{E \,\Delta_{\text{max}}} \mathrm{d}(\Delta E) \,|F_i(\Delta E)|^2$$

$$\Gamma_{\rm capt} \simeq \frac{5.90 \cdot 10^{26}}{\rm sec} \left(\frac{\rho_{\rm DM}}{0.3 \, \frac{\rm GeV}{\rm cm^3}} \right) \left(\frac{100 \, \rm GeV}{M_{\rm DM}} \right)^2 \left(\frac{270 \, \frac{\rm km}{\rm sec}}{v_0^{\rm eff}} \right)^3 \frac{\sigma_{\rm SD} + 1200 \, \sigma_{\rm SI}}{\rm pb}$$

Capture Rate

$$\Gamma_{\text{capt}} = \frac{\rho_{\text{DM}}}{M_{\text{DM}}} \sum_{i} \sigma_{i} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} \ n_{i}(r) \int_{0}^{\infty} dv \ 4\pi v^{2} f_{\odot}(v) \frac{v^{2} + v_{\odot\text{esc}}^{2}}{v} \wp_{i}(v, v_{\odot\text{esc}})$$

- DM abundance
- Target abundance in Sun (typically dominated by H, He)
- Scattering cross section (SI, SD)
- DM speed distribution in Sun's frame
- Capture probability—favours slow moving DM

$$\wp_i(v, v_{\odot \text{esc}}) = \frac{1}{E \,\Delta_{\text{max}}} \int_{E \,\Delta_{\text{min}}}^{E \,\Delta_{\text{max}}} \mathrm{d}(\Delta E) \,|F_i(\Delta E)|^2$$

$$\Gamma_{\rm capt} \simeq \frac{5.90 \cdot 10^{26}}{\rm sec} \left(\frac{\rho_{\rm DM}}{0.3 \,\frac{\rm GeV}{\rm cm^3}}\right) \left(\frac{100 \,\rm GeV}{M_{\rm DM}}\right)^2 \left(\frac{270 \,\frac{\rm km}{\rm sec}}{v_0^{\rm eff}}\right)^3 \frac{\sigma_{\rm SD} + 1200 \,\sigma_{\rm SI}}{\rm pb}$$
$$\Gamma_{\text{capt}} = \frac{\rho_{\text{DM}}}{M_{\text{DM}}} \sum_{i} \sigma_{i} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} \ n_{i}(r) \int_{0}^{\infty} dv \ 4\pi v^{2} f_{\odot}(v) \frac{v^{2} + v_{\odot\text{esc}}^{2}}{v} \wp_{i}(v, v_{\odot\text{esc}})$$

- DM abundance
- Target abundance in Sun (typically dominated by H, He)
- Scattering cross section (SI, SD)
- DM speed distribution in Sun's frame
- Capture probability—favours slow moving DM

$$\wp_i(v, v_{\odot \text{esc}}) = \frac{1}{E \,\Delta_{\text{max}}} \int_{E \,\Delta_{\text{min}}}^{E \,\Delta_{\text{max}}} \mathrm{d}(\Delta E) \,|F_i(\Delta E)|^2$$

$$\Gamma_{\rm capt} \simeq \frac{5.90 \cdot 10^{26}}{\rm sec} \left(\frac{\rho_{\rm DM}}{0.3 \,\frac{\rm GeV}{\rm cm^3}}\right) \left(\frac{100 \,\rm GeV}{M_{\rm DM}}\right)^2 \left(\frac{270 \,\frac{\rm km}{\rm sec}}{v_0^{\rm eff}}\right)^3 \frac{\sigma_{\rm SD} + 1200 \,\sigma_{\rm SI}}{\rm pb}$$

$$\Gamma_{\text{capt}} = \frac{\rho_{\text{DM}}}{M_{\text{DM}}} \sum_{i} \sigma_{i} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} \ n_{i}(r) \int_{0}^{\infty} dv \ 4\pi v^{2} f_{\odot}(v) \frac{v^{2} + v_{\odot\text{esc}}^{2}}{v} \wp_{i}(v, v_{\odot\text{esc}})$$

- DM abundance
- Target abundance in Sun (typically dominated by H, He)
- Scattering cross section (SI, SD)
- DM speed distribution in Sun's frame
- Capture probability—favours slow moving DM

$$\wp_i(v, v_{\odot \text{esc}}) = \frac{1}{E \,\Delta_{\text{max}}} \int_{E \,\Delta_{\text{min}}}^{E \,\Delta_{\text{max}}} \mathrm{d}(\Delta E) \,|F_i(\Delta E)|^2$$

$$\Gamma_{\rm capt} \simeq \frac{5.90 \cdot 10^{26}}{\rm sec} \left(\frac{\rho_{\rm DM}}{0.3 \, \frac{\rm GeV}{\rm cm^3}}\right) \left(\frac{100 \, \rm GeV}{M_{\rm DM}}\right)^2 \left(\frac{270 \, \frac{\rm km}{\rm sec}}{v_0^{\rm eff}}\right)^3 \frac{\sigma_{\rm SD} + 1200 \, \sigma_{\rm SI}}{\rm pb}$$

$$\Gamma_{\text{capt}} = \frac{\rho_{\text{DM}}}{M_{\text{DM}}} \sum_{i} \sigma_{i} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} n_{i}(r) \int_{0}^{\infty} dv \ 4\pi v^{2} f_{\odot}(v) \frac{v^{2} + v_{\odot\text{esc}}^{2}}{v} \wp_{i}(v, v_{\odot\text{esc}})$$

- DM abundance
- Target abundance in Sun (typically dominated by H, He)
- Scattering cross section (SI, SD)
- DM speed distribution in Sun's frame
- Capture probability—favours slow moving DM

$$\wp_i(v, v_{\odot \text{esc}}) = \frac{1}{E \,\Delta_{\text{max}}} \int_{E \,\Delta_{\text{min}}}^{E \,\Delta_{\text{max}}} \mathrm{d}(\Delta E) \,|F_i(\Delta E)|^2$$

$$\Gamma_{\rm capt} \simeq \frac{5.90 \cdot 10^{26}}{\rm sec} \left(\frac{\rho_{\rm DM}}{0.3 \,\frac{\rm GeV}{\rm cm^3}}\right) \left(\frac{100 \,\rm GeV}{M_{\rm DM}}\right)^2 \left(\frac{270 \,\frac{\rm km}{\rm sec}}{v_0^{\rm eff}}\right)^3 \frac{\sigma_{\rm SD} + 1200 \,\sigma_{\rm SI}}{\rm pb}$$

$$\Gamma_{\text{capt}} = \frac{\rho_{\text{DM}}}{M_{\text{DM}}} \sum_{i} \sigma_{i} \int_{0}^{R_{\odot}} dr \ 4\pi r^{2} n_{i}(r) \int_{0}^{\infty} dv \ 4\pi v^{2} f_{\odot}(v) \frac{v^{2} + v_{\odot\text{esc}}^{2}}{v} \wp_{i}(v, v_{\odot\text{esc}})$$

- DM abundance
- Target abundance in Sun (typically dominated by H, He)
- Scattering cross section (SI, SD)
- DM speed distribution in Sun's frame
- Capture probability—favours slow moving DM

$$\wp_i(v, v_{\odot \text{esc}}) = \frac{1}{E \,\Delta_{\text{max}}} \int_{E \,\Delta_{\text{min}}}^{E \,\Delta_{\text{max}}} \mathrm{d}(\Delta E) \,|F_i(\Delta E)|^2$$

$$\Gamma_{\rm capt} \simeq \frac{5.90 \cdot 10^{26}}{\rm sec} \left(\frac{\rho_{\rm DM}}{0.3 \,\frac{\rm GeV}{\rm cm^3}}\right) \left(\frac{100 \,\rm GeV}{M_{\rm DM}}\right)^2 \left(\frac{270 \,\frac{\rm km}{\rm sec}}{v_0^{\rm eff}}\right)^3 \frac{\sigma_{\rm SD} + 1200 \,\sigma_{\rm SI}}{\rm pb}$$

DM@Colliders

Jungman, Kamionkowski, Griest (1995)

Ways to search for DM at

account. Uncertai 111

the interpretation of the DAMA [19] and CoGeNT [18] results as being due to light mass WIMPs. We gratefully acknowledge support from NSF, DOE, SNF, Volkswagen Foundation, FCT, Région des Pays de

Loire, STCSM, DFG, and Weizmann Institute of Sci-

ence. We are grateful to LNGS for hosting and supportig XENON. * Electronic address: rafael.lang@a Electronic address: marc.schuma Steigman and M. S. Turner, Nucl. Phys. B253, 375 1985); G. Jungman, M. Kamionkowski, and K. Griest hys. Rept. 267, 195 (1996). N. Jarosik et al., Astrophys. J. Suppl. 192, 14 (2011)

 N. Satosia et al., Asstopuys. J. Suppl. 192, 14 (2011);
 K. Nakamura et al. (Particle Data Group), J. Phys. G37, 07502 (2010).
 M. W. Goedman and E. Witten, Phys. Rev. D31, 3059 (1985). Consider only the DM is light "Maver Consider only the DM is light" Maver Consider on the Consider only the DM is light "Maver Consider on the Con 4] J. D. Lewin and P. F. Smith, Astropart. Phys. 6, 87 (1996).

(green) [18] and DAMA (light red, without channeling) [19].

and a density of $\rho_{\chi}=0.3\,{\rm GeV/cm^3}.$ The S1 energy res-

olution, governed by Poisson fluctuations, is taken into

 $\sigma = 7.0 \times 10^{-45} \text{ cm}^2$ at a WIMP mass of $m_{\chi} = 50 \text{ GeV/c}^2$

scale as indicated i

ace, and cuts into the region AP dark matter is accessible or, the new result collinges aightforward relationship between account. Uncertainto AMA [19] and CoGeNT [18] mass WIMPs

ge support from NSF, DOE, on, FCT, Région des Pays de d Weizmann Institute of Sci-IGS for hosting and support-

Furner, Nucl. Phys. B253, 37 Kamionkowski, and K. Griest,

hys. J. Suppl. 192, 14 (2011); cle Data Group), J. Phys. G37,

Witten, Phys. Rev. D31, 30 Smith, Astropart. Phys. 6, 87

Science **327**, 1619 (2010). al. (EDELWEISS) (2011),

N100), Phys. Rev. Lett. 105,

100) (2011), arXiv:1103.5831. v. C79, 045807 (2009). 100) (2011), accepted by PRD,

DM

The impact of \mathcal{L}_{eff} data below 3 keV_{nr} is negligible at $m_{\nu} = 10 \,\text{GeV}/\text{c}^2$. The sensitivity is the expected limit in absence of a signal above background and is also shown in Fig. 5 as 1σ and 2σ region. Due to the presence of two events around 30 keV_{nr}, the limit at higher m_{χ} is weaker than expected. This limit is consistent with the one from the standard analysis, which calculates the limit based only on events in the WIMP search region with an acceptance-corrected exposure, weighted with the spectrum of a $m_{\chi} = 100 \,\text{GeV/c}^2$ WIMP, of 1471 kg × days. This result excludes a large fraction of previously unex[8] E. Aprile et al. (XENON100) (2011), arXiv:1103.5831. ., Phys. Lev. C79, 045807 (2009). 9 E. Aprile (100) (200), accepted by PRD, ev. Hod. Phys. 82, 2053 (2010).

[5] Z. Ahmed et al. (CDMS), Science 327, 1619 (2010).

arXiv:1103.4070.

131302 (2010).

[6] E. Armengaud et al. (EDELWEISS) (2011),

[7] E. Aprile et al. (XENON100), Phys. Rev. Lett. 105,

2] G. Plante et al. (2011), submitted to PRD and arXiv [13] F. Arneodo et al., Nucl. Instrum. Meth. A449, 147 (2000); D. Akimov et al., Phys. Lett. B524, 245 (2002)

R. Bernabei et al., Eur. Phys. J. direct C3, 11 (2001) E. Aprile et al., Phys. Rev. D72, 072006 (2005), V. Che pel et al., Astropart. Phys. 26, 58 (2006). A. Manzur et al., Phys. Rev. C81, 025808 (2010). 4] E. Aprile et al., Phys. Rev. Lett. 97, 081302 (2006).

[15] E. Aprile et al. (XENON100) (2011), arXiv: 1103.0303.

[16] S. Yellin, Phys. Rev. D66, 032005 (2002). [17] O. Buchmueller et al. (2011), arXiv:1102.4585

[18] C. E. Aalseth et al. (CoGeNT), Phys. Rev. Lett. 106, 131301 (2011). [19] C. Savage et al., JCAP 0904, 010

Ways to search for DM at

the interpretation of the DAMA [19] and CoGeNT [18] results as being due to light mass WIMPs.

We gratefully acknowledge support from NSF, DOE, SNF, Volkswagen Foundation, FCT, Région des Pays de la Loire, STCSM, DFG, and Weizmann Institute of Science. We are grateful to LNGS for hosting and supporting XENON.

Mono-mania at the LHC

e, and cuts into the region ^o dark matter is accessible erators and 🤇 support from NSE, DOE, FCT, Région des Pays de Weizmann Institute of Sci-

S for hosting and support-

rner, Nucl. Phys. **B253**, 3 mionkowski, and K. Griest. s. J. Suppl. 192, 14 (2011);

Data Group), J. Phys. G37,

'itten, Phys. Rev. D31, 3

cience **327**, 1619 (2010). (EDELWEISS) (2011),

100), Phys. Rev. Lett. 105,

0) (2011), arXiv:1103.5831. C79, 045807 (2009). 0) (2011), accepted by PRD,

d∕arXiv. Instrum. Meth. **Å449**, 147 hys. Lett. **B524**, 245 (2002); nys. J. direct C3, 11 (2001). D72, 072006 (2005). V. Che-

26, 58 (2006). A. Manzur 808 (2010) Lett. 97. (2006)

), arXiv:1102.458 eNT), Phys. Rev. Lett. 106,

 ${({\bar \chi} \gamma_\mu \chi) ({\bar q} \gamma^\mu q) \over \Lambda^2} \, ,$ $(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)$ $(\bar{\chi}P_Rq)(\bar{q}P_L\chi)$ $(\bar{\chi}\chi)\left(G^a_{\mu\nu}G^{a\mu\nu}\right)$ α_s

and a density of $\rho_{\chi} = 0.3 \,\text{GeV/cm}^3$. The S1 energy resolution, governed by Poisson fluctuations, is taken into account. Uncertainties in the energy scale as indicated in Fig. 1 as well as uncertainties in v_{esc} are profiled out and incorporated into the limit. The resulting 90% confidence level (CL) limit is shown in Fig. 5 and has a minimum $\sigma = 7.0 \times 10^{-45} \text{ cm}^2$ at a WIMP mass of $m_{\chi} = 50 \text{ GeV/c}^2$. The impact of \mathcal{L}_{eff} data below $3 \, \mathrm{keV}_{nr}$ is negligible at $m_{\chi} = 10 \,\mathrm{GeV/c^2}$. The sensitivity is the expected limit in absence of a signal above background and is also shown in Fig. 5 as 1σ and 2σ region. Due to the presence of two events around 30 keV_{nr} , the limit at higher m_{χ} is weaker than expected. This limit is consistent with the one from the standard analysis, which calculates the limit based only on events in the WIMP search region with an acceptance-corrected exposure, weighted with the spectrum of a $m_\chi=100\,{\rm GeV/c^2}$ WIMP, of 1471 kg × days. This result excludes a large fraction of previously unex-

131302 (2010)

[8] E. Aprile et al. (XENON100) (2011), arXiv:1103.5831.

 [9] E. Aprile et al., Phys. Rev. C79, 045807 (2009).
 [10] E. Aprile et al. (XENON100) (2011), accepted by PRD, arXiv:1101.386

[11] E. Aprile and T. Doke, Rev. Mod. Phys. 82, 2053 (2010). [12] G. Plante et al. (2011), submitted to PRD and arXiv.

- [13] F. Arneodo et al., Nucl. Instrum. Meth. A449, 147 (2000); D. Akimov et al., Phys. Lett. B524, 245 (2002);
 R. Bernabei et al., Eur. Phys. J. direct C3, 11 (2001). E. Aprile et al., Phys. Rev. D72, 072006 (2005), V. Chepel et al., Astropart. Phys. 26, 58 (2006). A. Manzur et al., Phys. Rev. C81, 025808 (2010)
- E. Aprile et al., Phys. Rev. Lett. 97, 081302 (2006) E. Aprile et al. (XENON100) (2011), arXiv:1103.0303.
- [16] S. Yellin, Phys. Rev. D66, 032005 (2002). [17] O. Buchmueller et al. (2011), arXiv:1102.4585
- [18] C. E. Aalseth et al. (CoGeNT), Phys. Rev. Lett. 106, 131301 (2011).
- [19] C. Savage et al., JCAP 0904, 01

SI, vector exchange

SD, axial-vector exchange

SI, scalar exchange

SI, scalar exchange

Typically consider each operator separately

e, and cuts into the region ^o dark matter is accessible erators and 🤇 support from NSE, DOE, FCT, Région des Pays de Weizmann Institute of Sci-

S for hosting and support-

rner, Nucl. Phys. **B253**, 3 mionkowski, and K. Griest.

s. J. Suppl. 192, 14 (2011); Data Group), J. Phys. G37,

'itten, Phys. Rev. D31, 3

cience **327**, 1619 (2010). (EDELWEISS) (2011),

100), Phys. Rev. Lett. 105,

0) (2011), arXiv:1103.5831. C79, 045807 (2009). 0) (2011), accepted by PRD,

mitted to d∕arXiv. Instrum. Meth. **Å449**, 147 hys. Lett. **B524**, 245 (2002); nys. J. direct C3, 11 (2001). D72, 072006 (2005). V. Che-

26, 58 (2006). A. Manzur 808 (2010) Lett. 97. (2006)

), arXiv:1102.458 eNT), Phys. Rev. Lett. 106,

JМ

and a density of $\rho_{\chi} = 0.3 \,\text{GeV/cm}^3$. The S1 energy res-131302 (2010) olution, governed by Poisson fluctuations, is taken into account. Uncertainties in the energy scale as indicated in Fig. 1 as well as uncertainties in v_{esc} are profiled out and arXiv:1101.386 incorporated into the limit. The resulting 90% confidence level (CL) limit is shown in Fig. 5 and has a minimum

[8] E. Aprile et al. (XENON100) (2011), arXiv:1103.5831.

[9] E. Aprile et al., Phys. Rev. C79, 045807 (2009).
 [10] E. Aprile et al. (XENON100) (2011), accepted by PRD,

E. Aprile and T. Doke, Rev. Mod. Phys. 82, 2053 (2010).

SI, vector exchange

SD, axial-vector exchange

SI, scalar exchange

SI, scalar exchange

Typically consider each operator separately

e, and cuts into the region ^o dark matter is accessible the n erators and 🤇 support from NSE, DOE, FCT, Région des Pays de Weizmann Institute of Sci-S for hosting and support-

and a density of $\rho_{\chi} = 0.3 \,\text{GeV/cm}^3$. The S1 energy resolution, governed by Poisson fluctuations, is taken into account. Uncertainties in the energy scale as indicated in Fig. 1 as well as uncertainties in v_{esc} are profiled out and incorporated into the limit. The resulting 90% confidence ..., 2053 (2.
..., vict to PRD and arXiv
..., vict. Instrum. Meth. A449, 1
..., vict. Instrum. Auth. Auth. Vict. V level (CL) limit is shown in Fig. 5 and has a minimum

131302 (2010) [8] E. Aprile et al. (XENON100) (2011), arXiv:1103.5831. [9] E. Aprile et al., Phys. Rev. C79, 045807 (2009).
 [10] E. Aprile et al. (XENON100) (2011), accepted by PRD,

arXiv:1101.386

E. Aprile and T. Doke, Rev. Mod. Phys. 82, 2053 (2010).

SI, vector exchange SD, axial-vector exchange

SI, scalar exchange

SI, scalar exchange

Typically consider each operator separately

mionkowski, and K. Griest. s. J. Suppl. 192, 14 (2011);

Data Group), J. Phys. G37,

'itten, Phys. Rev. D31, 3 hith, Astropart. Phys. 6, 87

cience **327**, 1619 (2010). (EDELWEISS) (2011),

100), Phys. Rev. Lett. 105,

JМ

ATLAS-CONF-2012-085

Monophoton

How to quantify nothing?

For all but the lightest mediators EFT is good for direct detection

$$\sigma(\chi N \to \chi N) \sim \frac{g_q^2 g_\chi^2}{M^4} \mu_{\chi N}^2$$

What fraction of collider events have momentum transfers sufficient to probe the UV completion?

[PJF,Harnik,Kopp,Tsai]

[An,Ji,Wang:1202.2894;March-Russell, Unwin,West: 1203.4854]

Look for the light mediator directly-dijet resonance/angular distributions

[An,Ji,Wang:1202.2894;March-Russell, Unwin,West: 1203.4854]

Look for the light mediator directly-dijet resonance/angular distributions

[An,Ji,Wang:1202.2894;March-Russell, Unwin,West: 1203.4854]

Look for the light mediator directly-dijet resonance/angular distributions

-channel scalar/psuedo-scalar

MFV: $\lambda_{\chi}\phi\bar{\chi}\chi + \lambda_U\phi\left(Y_U^{ij}Q_iHU_j^c\right)$ **Physics dominated by top**

- Scalars have helicity suppressed annihilation, and SI DD
- Pseudo scalars do not, and have SD momentum suppressed DD

-channel scalar/psuedo-scalar

MFV requires DM or mediator to carry flavour $\lambda \phi_i \bar{\chi} q_i$

(Like in SUSY MFV allows for separation of 1,2 from 3 gen.)

Majorana has only SD, Dirac has both Dirac cannot be a thermal relic, Majorana can if > 100 GeV

-channel scalar/psuedo-scalar

"squarks" who SUSY prior "squarks" $\lambda \phi_i \overline{\chi} \alpha_i$ MFV requires DM or mediator to c

(Like in SUSY MFV allows for separation of 1,2 from 3 gen.)

Majorana has only SD, Dirac has both Dirac cannot be a thermal relic, Majorana can if > 100 GeV

s-channel vector/axial-scalar (Higgs mode may be

Spontaneously broken U(1)' accessible, can alter physics)

Consistency of model? How does DM get mass, anomalies...

$m_{\chi} \lesssim \frac{\sqrt{4\pi}}{g_{\chi}^{A}} M_{V}$

Bounds on dileptons, leptophobic Z'

$$\begin{array}{ccc} g & g \\ \bullet \operatorname{Vectors} \operatorname{are} \operatorname{SI} & \chi & q \\ \bullet \operatorname{Axial} \operatorname{vectors} \operatorname{SD} & q \\ \bullet \operatorname{If} \operatorname{thermal} \operatorname{often} \operatorname{underproduc}_{\chi} \operatorname{ed} \\ \overline{q} \end{array}$$

monojet

- Landscape of simplified models is broad and varied
- Spin/parity of DM and mediator
- MFV
- Kinetic mixing
- Higgs portal
- Vector DM
- •Other dark sector states alter thermal history & BRs
- •Electroweak-inos, singlet-doublet DM, etc

[Chala, Kahlhoefer, McCullough, Nardini, Schmidt-Hoberg]

DM-DM Couplings

$\begin{array}{c} \chi & \chi \\ \chi & \chi \\ \chi & \chi \end{array}$

Dark sector models have DM-DM interactions SIMPs, velocity dependence?

Positive observations	σ/m	$v_{ m rel}$	Observation
Cores in spiral galaxies	$\gtrsim 1 \ {\rm cm}^2/{\rm g}$	30-200 km/s	Rotation curves
(dwarf/LSB galaxies)			
Too-big-to-fail problem			
Milky Way	$\gtrsim 0.6 \text{ cm}^2/\text{g}$	$50 \mathrm{~km/s}$	Stellar dispersion
Local Group	$\gtrsim 0.5 \ {\rm cm^2/g}$	$50 \ \mathrm{km/s}$	Stellar dispersion
Cores in clusters	$\sim 0.1 \ {\rm cm^2/g}$	$1500 \mathrm{~km/s}$	Stellar dispersion, lensing
Abell 3827 subhalo merger	$\sim 1.5 \ {\rm cm^2/g}$	$1500 \mathrm{~km/s}$	DM-galaxy offset
Abell 520 cluster merger	$\sim 1 \ {\rm cm}^2/{\rm g}$	$2000-3000 \mathrm{\ km/s}$	DM-galaxy offset
Constraints			
Halo shapes/ellipticity	$\lesssim 1 \ {\rm cm}^2/{\rm g}$	1300 km/s	Cluster lensing surveys
Substructure mergers	$\lesssim 2 \ {\rm cm^2/g}$	$\sim 500-4000 \; \rm km/s$	DM-galaxy offset
Merging clusters	$\lesssim {\rm few} \; {\rm cm}^2/{\rm g}$	2000 - 4000 km/s	Post-merger halo survival
			(Scattering depth $\tau < 1$)
Bullet Cluster	$\left \lesssim 0.7 \ {\rm cm}^2/{\rm g} \right $	4000 km/s	Mass-to-light ratio

 Core-vs-Cusp, too big to fail, missing satellites,...

(NO) Conclusions

DM is not just your advisor's WIMP model! There are interesting anomalies in multiple search techniques Many unexplored regions that can be explored soon/NOW!

Winds, streams and flows

Local abundance and velocity distribution are inputs into the interpretation of direct detection experiments

Only way to measure these things is through direct detection experiments [PJF, Kribs, Tait]

$$f_1(v_{\min}(E_R)) = -\frac{4\mu^2 E_R^2}{m_N^2 E_R^2 - \mu^2 \delta^2} \frac{1}{\mathcal{N}\sigma_0(v_{\min}(E_R)) F_\chi^2(E_R)} \left(\frac{d\mathcal{R}}{dE_R} - \mathcal{R}\frac{1}{F_\chi^2(E_R)} \frac{dF_\chi^2(E_R)}{dE_R}\right)$$

f-condition: $f(v) \ge 0$

(Deconvoluted) rate is a monotonically decreasing function, or there is non-standard particle physics e.g. inelastic or a increasing DM form factor Local abundance and velocity distribution are inputs into the interpretation of direct detection experiments

<u>Only</u> way to measure these things is through direct detection experiments [PJF, Kribs, Tait]

$$f_{1}(v_{\min}(E_{R})) = -\frac{4\mu^{2}E_{R}^{2}}{m_{N}^{2}E_{R}^{2} - \mu^{2}\delta^{2}} \frac{1}{\mathcal{N}\sigma_{0}(v_{\min}(E_{R}))F_{\chi}^{2}(E_{R})} \left(\frac{d\mathcal{R}}{dE_{R}} - \mathcal{R}\frac{1}{F_{\chi}^{2}(E_{R})}\frac{dF_{\chi}^{2}(E_{R})}{dE_{R}}\right)$$

$$f_{1}(v) = \int d\Omega f(\vec{v}).$$

f-condition: $f(v) \ge 0$

(Deconvoluted) rate is a monotonically decreasing function, or there is non-standard particle physics e.g. inelastic or a increasing DM form factor Local abundance and velocity distribution are inputs into the interpretation of direct detection experiments

<u>Only</u> way to measure these things is through direct detection experiments

$$f_{1}(v_{\min}(E_{R})) = -\frac{4\mu^{2}E_{R}^{2}}{m_{N}^{2}E_{R}^{2} - \mu^{2}\delta^{2}} \frac{1}{\mathcal{N}\sigma_{0}(v_{\min}(E_{R}))F_{\chi}^{2}(E_{R})} \left(\frac{d\mathcal{R}}{dE_{R}} - \mathcal{R}\frac{1}{F_{\chi}^{2}(E_{R})}\frac{dF_{\chi}^{2}(E_{R})}{dE_{R}}\right)$$

$$f_{1}(v) = \int d\Omega f(\vec{v}). \qquad \mathcal{R} \equiv \frac{1}{F_{N}^{2}(E_{R})}\frac{dR}{dE_{R}}$$

f-condition: $f(v) \ge 0$

(Deconvoluted) rate is a monotonically decreasing function, or there is non-standard particle physics e.g. inelastic or a increasing DM form factor

Two experiments allow us to test particle physics independent of astrophysics

- I) Make hypothesis about DM e.g. elastically scattering DM with mass 100 GeV and x-sec 10⁻⁴⁰ cm²
- 2) Use experiment A to extract astrophysics i.e. rho x f(v)
 3) Use these extracted astrophysics properties to predict result at experiment B
- 4) Compare to B's measurement/bound
- 5) Rule in our out each particle physics hypothesis
- Doesn't allow extraction of "unique" x-sec, mass Need relatively large statistics ~10's events Experiments must run over same part of year Other uncertainties (nuclear, atomic etc not addressed)

$$\frac{dR}{dE_R} = \frac{N_T M_T}{2\mu^2} \frac{\rho\sigma}{m_\chi} g(v)$$

 $v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$

Recoil energy uniquely determines **minimum** DM velocity

$$v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$$

Recoil energy uniquely determines **minimum** DM velocity

$$v_{min} = \sqrt{\frac{M_T E_R}{2\mu^2}}$$

Recoil energy uniquely determines **minimum** DM velocity

Using vmin space

Experiment I \longleftrightarrow Experiment 2 $[E_{low}^{(1)}, E_{low}^{(1)}] \iff [v_{min}^{low}, v_{min}^{high}] \iff [E_{low}^{(2)}, E_{high}^{(2)}]$

$$[\mathbf{E}_{\text{low}}^{(2)}, \mathbf{E}_{\text{high}}^{(2)}] = \frac{\mu_2^2 M_T^{(1)}}{\mu_1^2 M_T^{(2)}} [\mathbf{E}_{\text{low}}^{(1)}, \mathbf{E}_{\text{high}}^{(1)}]$$

Bin	CoGeNT	Ge	Na (Q=0.3)	Si	О	Xe
1	[0.5, 0.9]	[2.3, 3.8]	[1.5, 2.5]	[4.5, 7.6]	[5.8, 9.9]	[1.4, 2.3]
	0.90 ± 0.72	0.23 ± 0.18	0.078 ± 0.062	0.035 ± 0.028	0.011 ± 0.009	0.72 ± 0.58
2	[0.9, 1.5]	[3.8, 6.1]	[2.5, 4.0]	[7.6, 11.9]	$[9.9,\!15.6]$	[2.3, 3.7]
	0.37 ± 0.55	0.1 ± 0.149	0.035 ± 0.052	0.015 ± 0.023	0.005 ± 0.008	0.31 ± 0.46
3	[1.5, 2.3]	[6.1, 8.9]	[4.0, 5.8]	[11.9, 17.5]	[15.6, 22.8]	[3.7, 5.4]
	0.48 ± 0.22	0.136 ± 0.063	0.049 ± 0.022	0.021 ± 0.01	0.007 ± 0.003	0.41 ± 0.19
4	[2.3, 3.1]	[8.9, 11.6]	[5.8, 7.6]	[17.5, 22.8]	[22.8, 29.8]	[5.4,7]
	0.27 ± 0.23	0.08 ± 0.068	0.029 ± 0.025	0.013 ± 0.011	0.004 ± 0.004	0.23 ± 0.2

Using vmin space

Solve for g(v)

$$g(v_{min}) = \frac{2m_{\chi}\mu^2}{N_A \kappa m_p \rho \sigma(E_R)} \frac{dR_1}{dE_1}$$
$$\frac{dR_1}{dE_1} \iff g(v_{min}) \iff \frac{dR_2}{dE_2}$$

The master formula (SI):

$$C_T^{(i)} = \kappa^{(i)} \left(f_p \, Z^{(i)} + f_n \left(A^{(i)} - Z^{(i)} \right) \right)^2$$

$$\frac{dR_2}{dE_R} \left(E_2 \right) = \frac{C_T^{(2)}}{C_T^{(1)}} \frac{F_2^2(E_2)}{F_1^2 \left(\frac{\mu_1^2 M_T^{(2)}}{\mu_2^2 M_T^{(1)}} E_2 \right)} \frac{dR_1}{dE_R} \left(\frac{\mu_1^2 M_T^{(2)}}{\mu_2^2 M_T^{(1)}} E_2 \right)$$

$$N_T = \kappa N_A m_p / M_T$$

CoGeNT and XENONI0

XENUN100: New Spin-Independent Results

Axions

Solution to strong CP problem:

$$\frac{\theta}{32\pi^2} \mathrm{tr} \ \epsilon_{\alpha\beta\gamma\delta} F^{\alpha}\beta F^{\gamma\delta}$$

Contributes to neutron edm (<10^-26 ecm)

Why so small??

Axions

Solution to strong CP problem:

$$\frac{\theta}{32\pi^2} \mathrm{tr} \ \epsilon_{\alpha\beta\gamma\delta} F^{\alpha}\beta F^{\gamma\delta}$$

Contributes to neutron edm (<10^-26 ecm)

Why so small??

Perhaps a symmetry? Peccei Quinn axion

Axions

Axion is goldstone boson of spontaneously broken U(1)

$$\mathcal{L} = \frac{1}{2} (\partial a)^2 + \frac{1}{32\pi^2} \frac{a}{f} F \tilde{F} + \dots$$

Picks up a mass from QCD instantons

$$\mathcal{L} = \frac{1}{2} (\partial a)^2 - m_a^2 f_a^2 (1 - \cos a/f_a)$$

$$m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$$

 $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$

Axions are made through the "misalignment mechanism"
Can be CDM candidate despite mass <eV
Search for in very different ways from WIMP DM

 $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$

Axions are made through the "misalignment mechanism"
Can be CDM candidate despite mass <eV
Search for in very different ways from WIMP DM

Misalignment mechanism

Axion evolution $\ddot{a} + 3H\dot{a} + m_a^2(T)a = 0$

Axions start to oscillate when $3H \approx m_a(T)$

$$\frac{m_a(T)}{m_a} = 0.018 \left(\frac{\Lambda_{\rm QCD}}{200 \,{\rm MeV}}\right)^{1/2} \left(\frac{\Lambda_{\rm QCD}}{T}\right)^4$$

$$T_{\rm osc} = 150 \,\mathrm{Mev} \left(\frac{\Lambda_{\rm QCD}}{200 \,\mathrm{Mev}}\right)^{3/4} \left(\frac{10^{16} \,\mathrm{GeV}}{f_a}\right)^{1/6}$$

$$\Omega_a h^2 \sim 2 \times 10^4 \left(\frac{200 \text{MeV}}{\Lambda_{\text{QCD}}}\right)^{3/4} \left(\frac{f_a}{10^{16} \text{GeV}}\right)^{7/6} \theta_i^2 \gamma$$

Misalignment mechanism

Axion evolution $\ddot{a} + 3H\dot{a} + m_a^2(T)a = 0$

Axions start to oscillate when $3H \approx m_a(T)$

$$\frac{m_a(T)}{m_a} = 0.018 \left(\frac{\Lambda_{\rm QCD}}{200 \,{\rm MeV}}\right)^{1/2} \left(\frac{\Lambda_{\rm QCD}}{T}\right)^4$$
$$T_{\rm osc} = 150 \,{\rm Mev} \left(\frac{\Lambda_{\rm QCD}}{200 \,{\rm Mev}}\right)^{3/4} \left(\frac{10^{16} \,{\rm GeV}}{f_a}\right)^{1/6}$$

$$\Omega_a h^2 \sim 2 \times 10^4 \left(\frac{200 \text{MeV}}{\Lambda_{\text{QCD}}}\right)^{3/4} \left(\frac{f_a}{10^{16} \text{GeV}}\right)^{7/6} \theta_i^2 \gamma$$

Axion searches

Microwave cavities, take advantage of axion-photon coupling (a)

