Cosmic Frontier-Collider Complementarity

Patrick Fox **\$Fermilab**

New Horizons

Outline

- •Overview of dark matter's properties
- Overview of WIMP's properties
- Direct, Indirect searches
- Collider searches

<u>Lecture II</u>

- •Electroweakinos, a case study
- Light mediators, light dark matter
- Conclusions

Ways to search for DM at colliders

Simplified Models

Collider only sensitive to all 4 parameters over a narrow range

But mapping collider constraints to direct/indirect detection now requires assumptions

[PJF,Harnik,Kopp,Tsai]

Light Mediators

[An,Ji,Wang:1202.2894;March-Russell, Unwin,West: 1203.4854]

Look for the light mediator directly-dijet resonance/angular distributions

Light Mediators

[An,Ji,Wang:1202.2894;March-Russell, Unwin,West: 1203.4854]

Look for the light mediator directly-dijet resonance/angular distributions

Light Mediators

[An,Ji,Wang:1202.2894;March-Russell, Unwin,West: 1203.4854]

Look for the light mediator directly-dijet resonance/angular distributions

s-channel scalar/psuedo-scalar

MFV:
$$\lambda_{\chi}\phi\bar{\chi}\chi + \lambda_U\phi\left(Y_U^{ij}Q_iHU_j^c\right)$$

Physics dominated by top

- Scalars have helicity suppressed annihilation, and SI DD
- Pseudo scalars do not, and have SD momentum suppressed DD

Physics dominated by top

- Scalars have helicity suppressed annihilation, and SI DD
- Pseudo scalars do not, and have SD momentum suppressed DD

t-channel scalar/psuedo-scalar

MFV requires DM or mediator to carry flavour $\lambda \phi_i \bar{\chi} q_i$

(Like in SUSY MFV allows for separation of 1,2 from 3 gen.)

Majorana has only SD, Dirac has both Dirac cannot be a thermal relic, Majorana can if > 100 GeV

Types of Simplified models "squarks" who SUSY prior "squarks" $\lambda \phi \cdot \overline{\chi} \phi$

t-channel scalar/psuedo-scalar

MFV requires DM or mediator to

(Like in SUSY MFV allows for separation of 1,2 from 3 gen.)

Majorana has only SD, Dirac has both Dirac cannot be a thermal relic, Majorana can if > 100 GeV

s-channel vector/axial-scalar

Spontaneously broken U(1)' accessible, can alter physics)

(Higgs mode may be

Consistency of model? How does DM get mass, anomalies...

$m_{\chi} \lesssim \frac{\sqrt{4\pi}}{q_{\chi}^A} M_V$

Bounds on dileptons, leptophobic Z'

$$\begin{array}{ccc} g & g \\ \text{Vectors are SI} & \chi & q \\ \text{Axial vectors SD} & q \\ \text{If thermal often underproduced} \\ \bar{q} \end{array}$$

monojet

- Landscape of simplified models is broad and varied
- Spin/parity of DM and mediator
- MFV
- Kinetic mixing
- Higgs portal
- Vector DM
- •Other dark sector states alter thermal history & BRs
- Electroweak-inos, singlet-doublet DM, etc

[Chala, Kahlhoefer, McCullough, Nardini, Schmidt-Hoberg]

Higgs and DM

- •The Higgs exists. DM exists.
- The Higgs is a motivated candidate for mediator of DM interaction. a.k.a. the **Higgs Portal**.
- •Assuming Standard Higgs production:

```
Limit on invisible Higgs.

Limit on Higgs-DM coupling.

Limit on direct detection.
```


What next?

"Mono" searches: $\Delta \phi(j_1, j_2) < 2.5$ $N_{jet} \leq 2$

LHC is a jets "factory", can we do better?

Steal from SUSY jets+MET analyses

$$M_R = \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

[Rogan 1006.2727]

Complementarity

- Direct detection limited to DM above GeV, needs DM nearby moving in the right way
- No upper limit on mass probed, learn about DM in cosmos
- Indirect detection very sensitive to astrophysics
- Halo shapes can probe DM-DM interactions
- Collider searches have kinematic upper limit, no astrophysics systematics, but many others
- Complementary taken together provide complete picture

Complementarity

- Direct detection line
 Many exciting new ideas for probing light PM e.g. scattering off electrons semi/super conductors
 Many exciting new ideas for probed, learn about DM in cosmos
 Probed, learn about DM in cosmos
 Halo shapes can probe DM-DM interactions
 Collider searches have kinematic upper limit no astrophysics
 - Collider searches have kinematic upper limit, no astrophysics systematics, but many others
 - Complementary taken together provide complete picture

Complementarity

- Direct detection limited to DM above GeV, needs DM nearby moving in the right way
- No upper limit on mass probed, learn about DM in cosmos
- Indirect detection very sensitive to astrophysics
- Halo shapes can probe DM-DM interactions
- Collider searches have kinematic upper limit, no astrophysics systematics, but many others
- Complementary taken together provide complete picture

Slightly less simple—electroweakinos

Higgsinos, Wino, Bino admixtures

Charginos (Higgsinos, Winos) $(\widetilde{W}^+, \widetilde{H}_u^+, \widetilde{W}^-, \widetilde{H}_d^-)$

$$\mathbf{X} = \begin{pmatrix} M_2 & gv_u \\ gv_d & \mu \end{pmatrix} = \begin{pmatrix} M_2 & \sqrt{2}s_\beta m_W \\ \sqrt{2}c_\beta m_W & \mu \end{pmatrix}$$

Neutralinos $\psi^0 = (\widetilde{B}, \widetilde{W}^0, \widetilde{H}^0_d, \widetilde{H}^0_u)$

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_{1} & 0 & -c_{\beta} s_{W} m_{Z} & s_{\beta} s_{W} m_{Z} \\ 0 & M_{2} & c_{\beta} c_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} \\ -c_{\beta} s_{W} m_{Z} & c_{\beta} c_{W} m_{Z} & 0 & -\mu \\ s_{\beta} s_{W} m_{Z} & -s_{\beta} c_{W} m_{Z} & -\mu & 0 \end{pmatrix}$$

Slightly less simple—electroweakinos

Higgsinos, Wino, Bino admixtures

Charginos (Higgsinos, Winos) $(\widetilde{W}^+, \widetilde{H}_u^+, \widetilde{W}^-, \widetilde{H}_d^-)$

$$\mathbf{X} = \begin{pmatrix} M_2 & gv_u \\ gv_d & \mu \end{pmatrix} = \begin{pmatrix} M_2 & \sqrt{2}s_\beta m_W \\ \sqrt{2}c_\beta m_W & \mu \end{pmatrix}$$

Neutralinos $\psi^{0} = (\widetilde{B}, \widetilde{W}^{0}, \widetilde{H}_{d}^{0}, \widetilde{H}_{u}^{0})$ $\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_{1} & 0 & & \\ 0 & & & \\ 4 & \text{parameters: } \mathbf{mu}, & \mathbf{MI}, & \mathbf{M2}, & \text{tanbeta} \\ 1 & & & & \\ -s_{\beta}c_{W}m_{Z} & -\mu & 0 \end{pmatrix}.$ Electroweakinos general strategies [Low and Wang] Monojet [Gori, Jung, Wang, Wells] [Cirelli, Sala, Taoso] Hard ISR jet boosts chargino/neutralino system VBE

Tag forward jets with rapidity gap

Disappearing tracks

Pure Higgsino/Wino have small (loop) splittings. Long lived charginos. Sensitive to higher order operators

Soft leptons

e.g. Production of Wino NLSP and chargino. Possible to find relic Higgsino if Wino NLSP< 3TeV

Electroweakinos at 100 TeV

$$pp \to \chi_2^0 \chi_1^{\pm} j \to \left(\gamma \chi_1^0\right) \left(\ell^{\pm} \nu \chi_1^0\right) j$$

Small splittings mean that decays involve soft photons and leptons

ISR to boost system and get large MET (and trigger!) Background and signal scale very differently with pT

Electroweakinos at 100 TeV

$$pp \to \chi_2^0 \chi_1^{\pm} j \to \left(\gamma \chi_1^0\right) \left(\ell^{\pm} \nu \chi_1^0\right) j$$

Small splittings mean that decays involve soft photons and leptons

ISR to boost system and get large MET (and trigger!) Background and signal scale very differently with pT

Relic abundance

Mass splittings

Mass splittings

[Low and Wang]

Winos~3 TeV

[Low and Wang, see also Cirelli et al.]

For heavy DMW,Z exchange becomes a "long range" force

Zero energy bound states increase annihilation cross section

Complementarity, again

[Cirelli, Sala, Taoso]

Dark Sectors and Dark Mediators

Could this be DM annihilating?

I. Why only positron excess, not antiproton

2. Rate is 100x relic annihilation cross section

PM annihilates to light V, antiprotons kinematically forbidden

V exchange gives Sommerfeld enhancement!

Two step process also sequesters DM from SM, no direct detection

Predicts DM self interactions, core-cusp, missing satellites, too big to fail, N-body simulations, etc

Kinetic mixing

No SM fields charged under U(I)'

$$-\frac{\epsilon}{2}F_{\mu\nu}F'_{\mu\nu} = A'_{\mu} \times (e\epsilon)J^{\rm EM}_{\mu}$$

Dark photon (Z'?) couples proportional to charge

- Kinetic mixing allows multiple ways to search for light mediator:
- production at proton colliders, lepton colliders, beam dump, fixed target, neutrino experiments, beams in front of DM experiments

 χ

Kinetic mixing

 $-\frac{\epsilon}{2}F_{\mu\nu}F'_{\mu\nu} = A'_{\mu} \times (\epsilon)$

Dark photon (Z') couples proport

Figure 2: a) $\chi \bar{\chi}$ pair production $\bar{\chi}$ interval to a DM fermion with both Dirac

interaction is generically off-diagonal and

N. $\gamma^{\mu} \gamma^{\mu} \gamma^{\mu}$

Can decay back to SM or to DM, depending on mass

Assuming DM heavier than vector

Vector decays invisibly, DM can scatter downstream of production, or show up as MET

Have seen DM through its gravitational interactions IT IS NEW PHYSICS

- Should try to learn as much as possible about it
- Everyone has their part to play
- **Exciting times ahead!**

