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1. Introduction

Although the standard model (SM) has done a remarkably good job of

explaining the phenomena of the sub-atomic world there are reasons to

believe that it is not the final story. In the coming years the Large Hadron

Collider (LHC) will probe particle physics at unprecedented scales that, it

is hoped, will reveal new laws of nature and develop the next level in our

understanding of nature. One of the leading contenders for physics beyond-

the-SM (BSM) is supersymmetry (SUSY), some of the other possibilities

will be explained by other lecturers at TASI, and the purpose of these

lectures is to explain SUSY.

In the rest of this section I will describe some problems with the SM

that motivate much of BSM physics and briefly explain how SUSY deals

with them. The details will occupy the rest of the notes. In Sec. 2 I will

explain the modern language of SUSY, superfields and superspace, and

construct simple supersymmetric Lagrangians. In Sec. 3 I will describe the

field content and some features of the minimal supersymmetric version of

the SM, called the MSSM, in the case where supersymmetry is unbroken.

In the following section, Sec. 4, I will discuss the MSSM once SUSY is no

longer an exact symmetry of the Lagrangian using the language of spurions.
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One of the main motivations for introducing SUSY is problems in the Higgs

sector of the SM, so in Sec. 5 I will discuss electroweak symmetry breaking

in the MSSM in detail. The MSSM contains many new particles (dubbed

superpartners) that can be searched for at colliders, and, once SUSY is a

broken symmetry, these particles become heavy. In Sec. 6 I will calculate

the mass spectra for the superpartners and touch on the issue of flavour

violation generated through mixing in the superpartner sector. Discussions

of SUSY often require relating physics at high scales, like the GUT scale,

to physics at the weak scale. The tool for doing this is the renormalisation

group, which I will discuss in Sec. 7. One of the many appealing features

of SUSY is that it naturally contains within it a particle that has the

properties of dark matter, and which is produced in the early universe

in the correct amount. In Sec. 8 I will discuss the DM candidates within

the MSSM. Finally in Sec. 9 I will not conclude, instead offering words of

encouragement for your own future pursuits through the supersymmetric

world!

There are many reasons to study supersymmetry, ranging from the for-

mal to the practical; how one weighs each motivation depends on one’s taste.

Perhaps the best motivation to pay attention is that regardless of whether

or not low energy SUSY is realised in nature it is my belief that SUSY will

at some point be discovered at the LHC. This, seemingly rash, statement

is merely a reflection of the fact that SUSY has become the benchmark for

BSM physics. Despite the fact that many phenomena that are present in

SUSY also present in other models of new physics, if any new physics is

discovered at the LHC it will undoubtably be first attributed to some vari-

ant of SUSY. The language of supersymmetry is the de facto language of

most collider searches for BSM physics. It is important for experimentalists

and theorists alike to be well versed in the features of SUSY. Just like the

ability to converse in one foreign language often aides the ability to learn

another, the understanding of SUSY will aide the understanding of much

of BSM physics.

The historical discovery of SUSY serves as a valuable lesson in the power

of “no-go” theorems. The theorem in question is due to Coleman and Man-

dula1 and, stated loosely, says that under a set of physically reasonable

assumptions (e.g. a local, relativistic field theory) that the Lie-algebra un-

der which the S-matrix is symmetric is at most the direct product of the

Poincare group and the compact Lie group associated with internal symme-

tries. The major assumption, whose weakening allows for supersymmetry,

is that Lie algebras are defined by commutation relations. If we allow for
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anti-commutation as well as commutation relations (i.e. the generators are

no longer bosonic but may also be fermionic) we have graded Lie algebras

and may avoid the Coleman Mandula theorem. This more general analysis

was carried out by Haag, Lopuszanski and Sohnius2 and they identified the

most general graded Lie algebra allowed: the super-Poincare algebra.

The fact that supersymmetry is the most general space-time symmetry

allowed by nature does not in principle mean it exists in nature, but it is a

compelling reason to study it. SUSY involves introducing fermionic group

generators, Q, and thus the action of the group, Q|ψ〉 = |ψ′〉, must change

the spin of the state. Thus, in a supersymmetric world a bosonic state has

a fermionic partner and vice versa. As we will see shortly Q commutes with

the Hamiltonian so these partners are degenerate in mass. Obviously this

symmetry is broken in nature, what makes us believe SUSY is something

we may be able to test at weak scale experiments rather than something

that is broken at some high scale like the GUT scale? There are several

reasons to think that SUSY may have something to do with the TeV scale

and we will expound on these in more detail in these lectures.

1.1. The Hierarchy Problem

As is well known the Standard Model (SM) suffers from the hierarchy prob-

lem - the Higgs boson is quadratically sensitive to high scale physics. Since

this is one of the main motivations for SUSY to show up at the LHC it is

worth discussing the issue, and how SUSY alleviates this problem, in some

detail even before we have a complete definition of what SUSY is.

The only piece of the SM not yet observed is the Higgs boson. It is

also the only fundamental scalar in the theory and so behaves differently

from all the other fields under quantum corrections. As a simple toy model

consider a theory with a scalar (the Higgs) coupled to a heavy fermion (the

top quark), for now we will ignore all gauge interactions. In the SM the

fermion mass is generated from the scalar vev, here we will just insert it by

hand. The Lagrangian is

L = |∂µφ|2 + ψi 6∂ψ −mfψψ − yφψψ − µ2 |φ|2 − λ |φ|4 , (1)

where µ2 is positive. Classically there is a fermion of mass mf and a scalar

of mass m2
s = µ2. At loop level the fermion mass term and the scalar mass

term receive corrections from diagrams shown in Fig. 1. They differ in one
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very significant way,

∆mf ∼ − y2

16π2
mf log

(

Λ

mf

)

∆µ2 ∼ λ− y2

16π2
Λ2 . (2)

The fermion mass corrections are multiplicatively renormalised whereas the

scalars have an additive renormalisation. Thus, if the tree-level fermion

masses are small they remain so after quantum corrections, whereas the

scalar masses are dragged up to the cutoff scale of the theory. As expected

in effective field theory (EFT), all operators allowed by symmetry are gen-

erated at the cutoff scale with O(1) coefficients. Here the symmetry pro-

tecting the fermion mass is a chiral symmetry, ψ → eiαγ5ψ. This is broken

by the mass term and results in the loop correction being proportional to

mf . There is no such symmetry for the scalar. If the scalar were related to

the fermion through a symmetry then the quadratic divergence would be

removed, since it doesn’t exist for the fermion. In a supersymmetric world

where ψ and φ are related by supersymmetry we would find that λ and y

are related leading to the necessary cancellation.

By supersymmetrizing the SM the quadratic divergence of the Higgs

mass can be cutoff, this provides one motivation for the introduction of

SUSY. The Higgs is responsible for electroweak symmetry breaking, which

is associated with the ∼ 100 GeV scale, and in a natural theory this is the

mass we would expect for the Higgs. We see from Eq. (2) that there are large

quantum corrections to any bare mass the Higgs may have. If the SM is an

effective theory up to high scales, for instance the GUT scale ∼ 1016 GeV,

then there will be large one-loop corrections to its mass. To maintain the

physical mass to be ∼ 100 GeV there will need to be large cancellations

between the bare mass and the quantum corrections. If instead the SM

becomes supersymmetric at some scale ΛSUSY , i.e.above this scale there

are superpartners of the SM fields present in the theory, these quadratic

divergences will be cutoff. Requiring that there is only an O(1) tuning

between the bare mass and the quantum corrections, cutoff at the scale

ΛSUSY , we expect the superpartners to enter the theory around 4π×mH ∼
TeV.

1.2. Dark Matter

There is now overwhelming evidence for a large non-baryonic contribu-

tion to the matter budget of the universe. Observations over a wide range
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Fig. 1. One loop corrections to fermions and scalars.

of scales, such as galaxy rotation curves and measurements of the mi-

crowave background, tell us that dark matter (DM) contributes about 20%

of the critical energy density of the universe. Since all observations so fara

have been through DM’s gravitational effects very little about it is known.

However, we do know that it was cold, i.e. non-relativistic, during struc-

ture formation, it is only weakly interacting and is stable on cosmological

timescales. There is no particle within the SM that satisfies these require-

ments so the existence of DM is clear indication of BSM physics.

Potential DM candidates include axions, black holes and weakly in-

teracting massive particles (WIMPs) with mass ranging from ∼ 1GeV to

∼ 10−100 TeV. As we will see, the MSSM contains within it a WIMP par-

ticle with the right properties to be the DM - it is absolutely stable, weakly

interacting, and has mass ∼ 100 GeV. Even more enticing is the fact that

in the thermal evolution of the universe after the big bang this particle was

made in just the right abundance to explain the observed amount of DM!

It seems that SUSY gives us a candidate for DM for free. It also relates

what may be observed in the lab to what is being observed in the cosmos,

an exciting possibility. See Sec. 8 for more details.

1.3. Gauge coupling unification

The gauge couplings of the SM depend on energy in a way determined by the

renormalization group equations (RGEs). If one assumes that there are no

new states above the weak scale, a so called desert, the three gauge couplings

run in such a way that they are nearly all the same value at a high scale, ∼
1014 GeV. This remarkable fact, that three a priori independent parameters

have the same value at high scales is suggestive: perhaps SU(3)×SU(2)×
U(1) of the SM are really three pieces of one larger unified group, e.g. SU(5)

or SO(10), that is broken at the high scale. This idea, and the models that

realise it, are called GUTs, Grand Unified Theories.

aRecently there have been some anomalies in experiments searching directly and in-
directly for dark matter that may be interpreted as observation of non-standard dark
matter, see Neal Weiner’s lectures Ref. 3 for more details.
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However, the unification is far from perfect in the SM. Although the

three lines do get close to one another at a high scale the unification is not

ideal, and the scale of closest approach is low enough that proton decay,

mediated by gauge bosons at the GUT scale which are left over when the

GUT group is broken, should already have been observed. In the MSSM

there are additional states at and just above the weak scale that will alter

the RGEs and the running of the gauge couplings. Assuming that they

are the only new states, i.e. there is a SUSY desert, one can calculate

the gauge coupling running. Remarkably, the couplings now unify to a far

greater degree and at a higher scale, ∼ 1016 GeV, than before, correcting

both of the problems of the SM. Figure 2 shows an illustration of the the

gauge coupling running, at one loop, in both the SM and the MSSM. See

Sec. 7 for more discussion.

Fig. 2. One loop gauge coupling evolution for the SM (dashed lines) and the MSSM
(solid lines). The SU(3) gauge coupling is shown in blue (bottom lines), the SU(2) in
green (middle lines) and the U(1), in GUT normalisation (g1 =

p

5/3g′), in red (top
lines).

2. Superfield (and other) formalism

“. . . what he needed was a notion, not a notation.”

– Gauss writing about the mathematician John Wilson
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In this section I will attempt to explain all the formalism necessary

to understand the remainder of the lectures. Although it is not necessary

to understand the superfield formalism to learn supersymmetry, it is the

language used by most practitioners. It will be used by others at TASI (e.g.

Meade and Shih) and is well worth the effort to learn. There are many other

places one can look to learn the formalism, but you should be aware that

they almost all use different notations and conventions, both from these

lectures and each other.

I will use the “West Coast” metric, gµν = ηµν = diag(1,−1,−1,−1).

When one first learns field theory fermions are introduced using Dirac

spinors, ΨD. In supersymmetric field theories it is convenient to instead

use Weyl spinors. For a detailed analysis of how they are related see Ref. 4.

Dirac spinors are, in 4 dimensions, 4 component objects while Weyl spinors

are 2 component. By working in the Weyl, or chiral, basis for the γ-matrices

the relationships between the two become transparent:

γµ =

(

0 σµ

σµ 0

)

γ5 =

(

−1 0

0 1

)

(3)

σµ = (1,−→σ ), σµ = (1,−−→σ ) (4)

with

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (5)

Recall also the combination σµν = i
4 (σµσν − σνσµ). The Dirac spinor may

be built from a left-handed and right-handed Weyl spinor. In SUSY, and

much of BSM physics, it is useful to work with only left-handed spinors.

Recalling that right-handed spinors are hermitian conjugates of left-handed

fields,

ΨD =

(

χ

η†

)

, (6)

where both χ and η are left-handed. Until now I have suppressed indices,

and will do so for most of the rest of the lectures, but occasional it will be

necessary to include them. With indices attached Eq. (6) becomes,

ΨD =

(

χα

η†α̇

)

. (7)

The indices are raised and lowered with ǫαβ and ǫαβ with ǫ12 = −ǫ21 =

ǫ21 = −ǫ12 = 1, all others 0. Spinor summations are defined as

χη ≡ χαηα , χ
†η† ≡ χ†

α̇η
†α̇ . (8)
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Once these spinor summation conventions are defined we can usually get

away with suppressing the indices.

Exercise: Show χη = ηχ.

2.1. Superspace

With the addition of supersymmetry the usual algebra of the Lorentz group

is extended by the supersymmetry algebra which, forN = 1 supersymmetry

in 4 dimensions, is
{

Qα, Q
†

β̇

}

= 2σµ

αβ̇
Pµ (9)

{Qα, Qβ} =
{

Q†
α̇, Q

†

β̇

}

= 0 (10)

[Pµ, Qα] =
[

Pµ, Q
†
α̇

]

= 0 (11)

The generators of the SUSY algebra, Qα are spinors and SUSY transfor-

mations are of the form boson ↔ fermion. Equation (11) indicates that

SUSY transformations commute with the Hamiltonian and states related

by a SUSY transformation have the same mass, such states are called super-

partners. From Eq. (9) we see that two SUSY transformations amount to

a spacetime translation i.e. supersymmetry is a spacetime symmetry. This

suggests the concept of superspace, augmenting the usual four (commut-

ing) coordinates xµ to include 4 anticommuting (Grassmann) coordinates

θα, θα̇ ≡ (θα)†. Recall the features of Grassmann spinors:

{

θα, θβ
}

=
{

θα̇, θβ̇

}

=
{

θα, θβ̇

}

= 0 , (12)

leading to the result that the square of a Grassmann coordinate is zero,

making for simple Taylor series. For Grassmann variables integration is

akin to differentiation and,
∫

d2θ θ2 ≡
∫

d2θθαθα = 1

∫

d2θd2θ θ2θ
2

= 1 (13)

Exercise: Show d2θ = − 1
4dθ

αdθβǫαβ and ∂2

∂θα∂θα
θ2 = 4.

Just as the momentum operator, −i∂µ, is the generator of space-time

translations we would like to determine the generator, Qα, of SUSY trans-

formations. An obvious guess is Qα = −i ∂
∂θα but it is easy to check that
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this does not satisfy the algebra of Eq. (9). Instead the generators are,

Qα =
∂

∂θα
− iσµ

αβ̇
θ

β̇
∂µ (14)

Qα̇ =
∂

∂θ
α̇
− iθβσµ

βα̇∂µ (15)

Exercise: Show that these Q do indeed satisfy the SUSY algebra.

With the generators in hand we may exponentiate and carry out a finite

SUSY transformation on a function of superspace, which has a remarkably

simple form.

Exercise: Confirm that

eǫQ+ǫQf(xµ, θ, θ) = f(xµ + iǫσµθ + iθσµǫ, θ + ǫ, θ + ǫ) . (16)

The final piece we need to introduce are the superspace derivatives,

which anti-commute with the generators and are given byb

Dα =
∂

∂θα
+ i
(

σµθ
)

α
∂µ (17)

Dα̇ = − ∂

∂θ
α̇
− i (θσµ)α̇ ∂µ (18)

(19)

So far this may seem like formality for formality’s sake, but its utility

will hopefully soon become very clear. Rather than working with component

fields, e.g. fermions and scalars, and constructing Lagrangians that must be

painstakingly checked to ensure SUSY is preserved we can instead work with

superfields and supersymmetry is ensured. It is much like using four vectors

in relativity, if there are no “hanging indices” then Lorentz invariance is

maintained without having to worry about how t, x, y, and z transform

under a particular boost. In addition, actions are now built from integrals

over superspace,
∫

d4xd2θd2θ.

Thanks to the properties of Grassmann coordinates Eq. (12) the most

general superfield can be Taylor expanded in its θ coordinates.

G(x, θ, θ) = φ(x)+θψ+θχ+θ2m+θ
2
n+θσµθVµ+θ2θλ+θ

2
θρ+θ2θ

2
d (20)

bNotice that I have (deliberately) started to become more sloppy with indices, but there
is still enough information to replace them all, should you feel so inclined.
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Table 1. Number of degrees of
freedom of components of the
chiral multiplet.

Field Off-shell On-shell

φ 2 2
ψ 4 2
F 2 0

This is a lot of fields, more than we would expect to realise supersym-

metry given the toy example discussed in the introduction. This general

representation Eq. (20) is reducible, and by imposing constraints we can

build smaller irreducible representations. It is these we will use to describe

supersymmetric field theories.

2.2. Chiral Superfield

We can build a smaller representation, the chiral superfield, by imposing

the constraint

DΦ = 0 . (21)

Notice that since {D,Q} = 0 this constraint is invariant under SUSY trans-

formations. To identify what a chiral superfield is in terms of components

first note that

Dα̇

(

xµ + iθσµθ
)

= 0 and Dα̇θ = 0 . (22)

Thus, a chiral superfield is a function of y = xµ + iθσµθ and θ. Then,

expanding as before in powers of θ,

Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y) (23)

= φ(x) − iθσµθ∂µφ− 1

4
θ2θ

2
∂2φ

+
√

2θψ +
i√
2
θ2∂µψσ

µθ + θ2F . (24)

So we see that the chiral superfield contains a complex scalar, φ, a Weyl

fermion, ψ and another complex scalar, F , that we will refer to as an aux-

iliary field (we will see why shortly). It is the perfect candidate to use for

the matter and Higgs fields in a supersymmetric version of the SM. Note

also that any analytic function of chiral superfields (i.e. a function made

out of powers of Φ and no powers of Φ†) is itself a chiral superfield.
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Exercise: Using the results of the previous exercise work out the SUSY

transformations on the components of the chiral superfield. That is, calcu-

late δΦ =
(

ǫQ+ ǫQ
)

Φ and confirm that,

δφ =
√

2ǫψ, δψ =
√

2ǫF +
√

2iσµǫ∂µφ, δF = i
√

2ǫσµ∂µψ . (25)

Chiral superfields can be combined in various ways to build superspace,

and therefore supersymmetric, invariants. From Eq. (21) we see that any

holomorphic function of chiral superfields is itself a chiral superfield. Also,

notice that the highest component of the chiral superfield transforms into

a total derivative under a SUSY transformation (see the previous exercise

Eq. (25)). This is true for the highest component of any supermultiplet and

is as expected on dimensional grounds; since F is the highest dimension

field in the multiplet and the SUSY transformation involves ǫ whose di-

mension is [ǫ] = −1/2, making up the units requires a derivative. Since any

holomorphic function of chiral superfields is itself a chiral superfield, then

the quantity
∫

d4x

∫

d2θW (Φ) , (26)

where W is a polynomial in Φ, is a SUSY invariant and a perfect candidate

for a term in a SUSY action. Thus, for chiral superfields an integral over

half of superspace is invariant. Alternatively, θ
2
f(Φ) is invariant when inte-

grated over all of superspace but using Eq. (13) this reduces to integrating

over only θ2.

Functions of both Φ and Φ† must be integrated over the whole of su-

perspace in order to be invariant. Thus, we can now write down the most

general supersymmetric invariant action built from chiral superfields, Φi,

S =

∫

d4x

[∫

d4θK(Φ†
i ,Φj) +

∫

d2θW (Φi) + h.c.

]

. (27)

K is the Kähler potential and is real and W is the superpotential and is

holomorphic in the chiral superfield(s). The chiral superfield has dimension

[Φ] = 1, the same as for its scalar φ, which means that [θ] = −1/2. So the

Kähler potential must have dimension 2 and the superpotential dimension

3, which will limit the renormalizable terms we can write down. Let us

examine a simple example of a supersymmetric theory constructed entirely

from chiral superfields. In so doing some of the formalism’s utility will

become apparent.
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2.2.1. Wess-Zumino model

The most general supersymmetric, renormalizable model of a single chiral

superfield has Lagrangian density
∫

d4θΦ†Φ +

∫

d2θ

(

m

2
Φ2 +

λ

3
Φ3

)

+ h.c. (28)

Using the results of the previous subsection we can expand the superfield

in its components and find

L = ∂µφ∗∂µφ+ ψ†iσµ∂µψ + F ∗F

+mFφ− 1

2
mψψ + h.c.+ λFφ2 − λφψψ + h.c. (29)

The first line comes from the Kähler potential in Eq. (28) and the second

from the superpotential. This looks like a model of an interacting Weyl

fermion and a complex scalar very similar to that discussed in the intro-

duction, but what about F? There is no ∂F/∂t term in the Lagrangian.

It is not a propagating field so its equations of motion will be algebraic,

hence the name auxiliary field. This explains the counting shown in Table 1,

after application of the equations of motion the only degrees of freedom

are contained in the fermion and boson and match. But off-shell, where

the equations of motion are not applied, we need to introduce additional

bosonic degrees of freedom. The introduction of the auxiliary fields and

of the superspace notation gives a representation of supersymmetry that

closes even off-shell.

Since the F-term equations are algebraic in the other fields they can

be solved for and re-inserted into the Lagrangian. For the simple case with

canonical Kähler potential, K = Φ†Φ, the F-term equations of motion are

F ∗ = −∂W
∂φ

. (30)

Inserting these equations back into the action results in a contribution to

the potential from these F-terms,

VF = |F |2 = |∂W
∂φ

|2 , (31)

notice that this potential is positive semi-definite.

Doing this for the Wess-Zumino model we find

F ∗ = −∂W
∂φ

= −(mφ+ λφ2) , (32)
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and then

L = |∂µφ|2 + ψ†iσµ∂µψ − 1

2
mψψ − λφψψ + h.c.− |mφ+ λφ2|2 . (33)

This is then a model of a fermion interacting with a scalar. They are degen-

erate in mass, and if you were to calculate the loop corrections to the scalar

masses you would find there is no quadratic divergence. This last state-

ment is easy to see from the example in Sec. 1.1, supersymmetry relates

the Yukawa coupling to the scalar self coupling and the quadratic diver-

gence of Eq. (2) is cancelled. The additional scalar3 coupling present in the

Wess-Zumino model cannot introduce quadratic divergences in the scalar

mass2 since the coupling is dimensionful. Furthermore, because the scalar

and fermion masses are the same all logarithmic divergences also cancel.

For completeness, the general case, with arbitrary number of chiral su-

perfields Φi, where the Lagrangian is given beyEq. (27) leads to a potential

V =
∂W ∗

∂φ∗i
K−1

ij

∂W

∂φj
, whereKij =

∂K

∂φ∗i ∂φj
. (34)

2.3. Vector Superfield

Another constraint that can be placed on the general superfield is that of

reality,

V † = V . (35)

Doing so will lead us to the vector superfield. The full vector superfield still

has many components but we can take advantage of the fact that all the

vectors in the SM are gauge bosons and have a related gauge symmetryc,

Aµ → Aµ + ∂µΛ, to try to gauge some of the components away. We extend

the gauge transformations to act on superfields by noticing that for a chiral

superfield Λ the combination Λ +Λ† is real so V +(Λ + Λ†) is still a vector

superfield. In addition, both expansions contain terms that behave in the

correct way to be the symmetry transformation on the gauge field,

V = . . .+θσµθAµ + . . . , and Λ+Λ† = . . .+ iθσµθ∂µ(φ−φ†)+ . . . (36)

Using this gauge transformation we can write the vector superfield in the

Wess-Zumino gauge where many of the components have been gauged away,

leaving just a vector, a fermion and a real scalar (another auxiliary field),

V
W Zgauge

= 2θσµθAµ + 2θ2θλ† + 2θθ
2
λ+ θ2θ

2
D . (37)

cFor now we restrict ourselves to Abelian groups.
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Thus the vector multiplet contains the gauge fields and their superpartners,

the gauginos. In order to write down the kinetic terms for the gauge fields

and its superpartner we introduce the (gauge covariant) chiral superfield,

Wα, built from the vector superfield,

Wα = −1

8
D

2
DαV, andW α̇ = −1

8
D2DαV (38)

Expanding in terms of component fields leads to,

Wα = λα + θαD − (σµνθ)αFµν + iθ2σµ∂µλ
† , (39)

and explains the often used name of supersymmetric field strength. The

field strength has scaling dimension [Wα] = 3/2 and the only renormalizable

operator we can build from it is a superpotential term,

1

8π
Im

[(

4πi

g2
+
θY M

2π

)∫

d2θWαWα

]

= − 1

4g2
FµνF

µν +
i

g2
λ†σµDµλ+

1

2g2
D2 − θY M

32π2
Fµν F̃

µν . (40)

Exercise: By applying the SUSY generators (15) to (37) show that re-

stricting to the Wess-Zumino gauge breaks supersymmetry.

It is common to treat the combination of gauge coupling and θ-angle

as one quantity, a complex gauge coupling, τ = 4πi
g2 + θY M

2π , and for most

discussions it is sufficient to assume θY M = 0. In this case the Lagrangian

term is,

1

4g2

∫

d2θWαWα + h.c. = − 1

4g2
FµνF

µν +
i

g2
λ†σµDµλ+

1

2g2
D2 . (41)

As expected the auxiliary field, D, has no kinetic term and again its equa-

tion of motion will be algebraic.

If the chiral superfields of the previous section are charged under the

gauge group then they transform as,

Φ → e−qΛΦ , (42)

which means that the Kähler potential of Eq. (27) is no longer gauge invari-

ant. Including the gauge interactions the most general Lagrangian involving

vector and chiral superfields of charge qi becomes,

L =

∫

d4θK
(

Φ†
i , e

qiV Φi

)

+

∫

d2θ τ WαW
α+h.c+

∫

d2θW (Φi)+h.c. (43)
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Table 2. Number of degrees of
freedom of components of the
vector multiplet.

Field Off-shell On-shell

Aµ 3 2
λ 4 2
D 1 0

We will limit ourselves to the canonical (renormalizable) Kähler term, K =

Φ†eqV Φ for which,
∫

d4θΦ†
ie

qiV Φi = Dµφ∗iDµφi + ψ†
i iσ

µ∂µψi + F ∗
i Fi

+
√

2
∑

i

qi

(

φ∗iψiλ+ λ†ψ†
iφi

)

+
∑

i

qiDφ
∗
iφi (44)

Combining this with Eq. (40) we can solve for the D-term and find,

D = −g2
∑

i

qiφ
∗
i φi . (45)

As before we can remove the auxiliary field from the Lagrangian and we

find that it contributes to the potential,

VD =
1

2
g2

(

∑

i

qiφ
∗
i φi

)2

. (46)

So far we have limited ourselves to Abelian groups. For non-Abelian

groups chiral multiplets whose representation have generators T a, transform

as,

Φ → e−T aΛa

Φ, Φ† → Φ†e−T aΛa†

(47)

in particular fundamental and anti-fundamental representations have a rel-

ative minus sign in the way they transform. The vector superfield now has

a more complicated transformation,

eT aV a → eT aΛa†

eT aV a

eT aΛa

(48)

and the supersymmetric field strength is now,

W a
αT

a = −1

4
D

2
e−T aΛa

Dαe
T aV a

. (49)

For the particular case of an Abelian group there is one more super-

symmetric and gauge invariant term we can add to the Lagrangian, the

Fayet-Iliopolis term,

ξ

∫

d4θV = ξD , (50)
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which acts as a source for the D-term.

In a general theory involving chiral and vector superfields the scalar

potential is given by the sum of F-term and D-term contributions,

V = VF + VD , (51)

and it is positive semi-definite, V ≥ 0. In fact, if and only if the F-term

and D-term equations can be solvedd (i.e. Fi = 0 and Da = 0) is super-

symmetry unbroken. To see this recall the susy algebra Eq. (9) and take

the expectation value of the trace of Eq. (9) in the vacuum,

〈0|4P 0|0〉 = 〈0|{Qα, Q
†
α̇}|0〉 = 〈0|(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2)|0〉

=
∣

∣

∣Q
†
1|0〉

∣

∣

∣

2

+ |Q1|0〉|2 +
∣

∣

∣Q
†
2|0〉

∣

∣

∣

2

+ |Q2|0〉|2

≥ 0 (52)

If the vacuum |0〉 is invariant under a supersymmetric transformation then

Q|0〉 = 0 and SUSY is unbroken and the vacuum energy 〈0|H |0〉 = 0 and

thus F = 0 and D = 0. Otherwise if SUSY is spontaneously broken (Q

does not annihilate the vacuum) the vacuum energy is positive, since the

right side of Eq. (52) is positive semi-definite, and one of the F or D-terms

is non-zero.

2.4. R-symmetry

With the introduction of superspace coordinates it is possible to define a

new symmetry of the action. Under this R-symmetry the θ coordinate picks

up a phase,

θ → eiαθ, and θ → e−iαθ (53)

From our definition of integration of Grassmann coordinates Eq. (13) we

see dθ rotates the opposite way to θ. This means that if the Kähler potential

has R-charge 0 and the superpotential has R-charge 2 the action will be

R-symmetric. One immediate consequence of this is that Wα and therefore

gauginos have R-charge 1. Under an R-symmetry transformation θ rotates

by a phase, so different components of a superfield must have different R-

charges. As an example consider the superpotential W = mΦ2 which is

R-symmetric if Φ has R-charge 1, its components then transform as,

φ(x) → eiαφ(x), ψ(x) → ψ(x), F → e−iαF . (54)

dIn non-Abelian theories the existence of a supersymmetric vacuum is determined en-
tirely by the F-term equations.
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2.5. Putting the formalism to work: O’Raifeartaigh and

other models

So far we have concentrated on writing down supersymmetric actions with-

out worry about whether the ground state is supersymmetric. Now we will

consider the simplest class of models that spontaneously break SUSY, and

in so doing learn a few general rules about models that break SUSY at tree

level and how one goes about analyzing models of SUSY breaking.

The simplest modelse that break supersymmetry are O’Raifeartaigh

models6 and are built from chiral superfields. Consider as an example the

model with 3 chiral superfields, A,B,X and superpotential,

W = λX(A2 − µ2) +mAB + h.c. , (55)

we will assume throughout that the parameters are all real. The F-term

equations are,

F ∗
X = −∂W

∂X
= λ(A2 − µ2) = 0 (56)

F ∗
A = −∂W

∂A
= mB + 2λAX = 0 (57)

F ∗
B = −∂W

∂B
= mA = 0 , (58)

which cannot be simultaneously solved and thus SUSY is broken. It is

instructive to examine the spectrum in this model, to do so we will need

the fermion, MF , and scalar, M2
S, mass matrices. At tree-level these are

simply given by,

MF |ij =
∂2W

∂Φi∂Φj
and M2

S|ij =
∂2V

∂φi∂φj
(59)

For the O’Raifeartaigh model of interest the potential is given by,

V = |FX |2 + |FA|2 + |FB|2 = |λ(A2−µ2)|2 + |mB+2λAX |2 + |mA|2 , (60)

which has a flat direction since Eq. (57) can always be solved regardless of

the values of the other fields. This vacuum degeneracy will be lifted by loop

corrections. If m2 − 2λ2µ2 > 0 the minimum is at the origin, otherwise A

acquires a vev. The two minima are

A = 0, B = 0 (61)

A2 =
2λ2µ2 −m2

2λ2
, B =

2λ

m

√

2λ2µ2 −m2

2λ2
X. (62)

eThe Poloyni model5 has just a linear superpotential, W = µ2Z, and is simpler, but
rather boring to analyze.
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At the first, V = λ2µ4 and at the second V = m2(µ2 − m2

4λ2 ). Concentrating

on the case with the vacuum at the origin the fermion mass matrix in the

(ψX , ψA, ψB) basis is given by,

MF =
∂2W

∂Φi∂Φj
=





0 0 0

0 2λx m

0 m 0



 , (63)

where x = 〈X〉. The three fermions have mass 0, and λx ±
√
m2 + λ2λx2.

The massless fermion is the Goldstino, the analogue of the Goldstone boson

of spontaneously broken global symmetries. Here it is fermionic since the

spontaneoulsy broken symmetry is SUSY and its generators are fermionic

not bosonic.

The scalar mass matrix is more complicated. In principle it is a 6 × 6

matrix but since X and X∗ don’t acquire masses we concentrate on the

4 × 4 submatrix. In the (A,B,A∗, B∗) basis it is,

M2
S =

∂2V

∂φi∂φj
=









m2 + 4λ2x2 2λmx −λ2µ2 0

2λmx m2 0 0

−λ2µ2 0 m2 + 4λ2x2 2λmx

0 0 2λmx m2









(64)

The scalar masses (really m2’s) are 0,0, and m2 + λ
2 (4λx2 ± λµ2 ±

√

16m2x2 + λ2(µ2 − 4x2)). We can immediately see another feature of

spontaneous SUSY breaking in a renormalizable theory, there is a sum

rule:

Str M2 =
∑

(−1)2J(2J + 1)M2
J =

∑

scalars

M2
s − 2

∑

fermions

M2
F = 0 (65)

This is true in all theories where SUSY is broken at the renormalizable

level and immediately indicates a problem for coupling the MSSM to SUSY

breaking directly - there would be superpartner lighter than its SM partner!

To see that this is true in general and not just a quirk of O’Raifeartaigh

models recall that the scalar mass matrix is of the form,

M2
S :

1

2
(Φ∗

i Φi)





∂2V
∂φ∗

i
∂φj

∂2V
∂φ∗

i
∂φ∗

j

∂2V
∂φi∂φj

∂2V
∂φi∂φ∗

j





(

Φj

Φ∗
j

)

(66)

while the fermion mass matrix is,

MF :
1

2
ψi

∂W

∂φi∂φj
ψj (67)
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Since V = ∂W
∂φi

∂W∗

∂φ∗
i

we immediately see that TrM2
S = 2TrM2

F .

Exercise: Fayet-Iliopoulos terms. For a U(1) gauge group there is one

more gauge invariant operator that can be added to the Lagrangian, a

Fayet-Iliopoulos term,
∫

d4θκV . Consider SUSY QED with an FI term and

a vector like pair of “electrons”, i.e.

(

Φ†
1e

eV Φ1 + Φ†
2e

−eV Φ2 − κ2V
)∣

∣

∣

θ4

+

(

1

4
WαW

α +mΦ1Φ2 + h.c.

)∣

∣

∣

∣

θ2

(68)

Show that for the case m2 > eκ2 SUSY is broken but the gauge symmetry

is not but for m2 < eκ2 both SUSY and the U(1) are broken. Show that in

both cases the supertrace is 0, as expected.

3. The MSSM - unbroken SUSY

Now we are in a position to discuss the supersymmetric version of the SM.

There are many ways in which one can imagine embedding the SM within

supersymmetry, the one which requires the introduction of the smallest

number of superpartners is called the Minimal Supersymmetric Standard

Model (MSSM). Before writing down its Lagrangian it is useful to first

remind ourselves of the field content of the SM, written in terms of only

LH fermions. The SM is based on the gauge structure SU(3)×SU(2)×U(1)

and under these groups it has 3 generations of matter fields that are in the

following representations:

qi = (uL, dL) :

(

3, 2,
1

6

)

uc
i :

(

3, 1,−2

3

)

dc
i :

(

3, 1,
1

3

)

ℓ = (ν, eL) :

(

1, 2,−1

2

)

ec
i : (1, 1, 1) (69)

Gauge fields that are in the adjoint representation of the groups:

g : (8, 1, 0)

Aa
µ : (1, 3, 0)

Bµ : (1, 1, 0) (70)



June 17, 2010 16:50 WSPC - Proceedings Trim Size: 9in x 6in final

20

The last two mix after electroweak symmetry breaking. Finally there is the

Higgs boson:

h :

(

1, 2,
1

2

)

(71)

The simplest way to supersymmetrise is to place all the SM fields into super-

fields and introduce the necessary superpartners to fill out the superfields.

For the fermions this requires introducing scalars (dubbed sfermions) and

placing them in a chiral multiplets. We will denote the chiral superfield by

the upper case version of the SM field, e.g. qi → Qi. Superpartners of SM

fields will be denoted with a tilde and the scalars have been given names by

(unfortunately) adding an “s” to the front of the SM particles name, e.g.

the superpartner of the electron (the selectron) is ẽ.

The gauge bosons will require the introduction of femionic partners

(dubbed gauginos) and will be placed in vector superfields. We will denote

them as Vi where i = 3, 2, 1 denotes the rank of the group. The fermionic

partners take their name from the SM field and adding an “ino” on the

end, e.g. the gluino, g̃, is the fermionic partner of the gluon, g.

So far in filling out the chiral superfields we have been introducing new

bosonic partners. In the case of the Higgs however we are introducing a

new chiral fermion and this leads to a problem. Chiral fermions contribute

to anomalies and the introduction of one fermion charged under SU(2) ×
U(1) will make the gauge symmetries anomalous. Also, the restriction in

supersymmetry that the superpotential has to be a holomorphic function of

the chiral superfields would forbid some of the necessary Yukawa couplings.

Both of these facts can be avoided if we introduce not only a fermionic

partner of the SM Higgs (by the naming convention called a Higgsino) but

a second chiral superfield. Thus there are now two Higgs chiral superfields,

Hu = (H+
u , H

0
u) :

(

1, 2,
1

2

)

Hd = (H0
d , H

−
d ) :

(

1, 2,−1

2

)

(72)

The total field content and the bizarre naming convention is collected in

Table 3.

With the field content in hand we may now procede to follow the mantra

of effective field theory and write down all operators allowed by symmetry.

Keeping only renormalizable operators we have Kähler terms of the form,

K = Q†eV3Q+ U c†e−V3U c +Dc†e−V3Dc + . . . (73)
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Table 3. Field content and naming conventions of the MSSM.

SM Field SU(3), SU(2), U(1) MSSM partner Superfield

qi (LH quarks) (3, 2, 1
6
) q̃i (LH squarks) Qi

uc
i (RH top, charm, up) (3̄, 1,− 2

3
) ũc

i (RH stop, scharm, sup) Uc
i

dc
i (RH bottom, strange, down) (3̄, 1, 1

3
) d̃c

i (RH sbottom, sstrange, sdown) Dc
i

ℓi (LH leptons) (1, 2,− 1
2
) ℓ̃i (LH sleptons) Li

ec
i (RH tau, muon, electron) (1, 1, 1) ẽc

i (RH stau, smuon, selectron) Ec
i

hu (hd) (Higgs) (1, 2, 1
2
); (1, 2,− 1

2
) h̃u

“

h̃d

”

(higgsino) Hu (Hd)

gauge kinetic terms of the form,
∫

d2θ
1

4g2
3

W (3)
α W (3)α + . . . . (74)

Finally, the superpotential which we discuss in two parts. First,

WMSSM = YUU
cQHu − YDD

cQHd − YEE
cLHd + µHuHd . (75)

I have suppressed flavour and gauge indices for clarity. We can see again

the need for the introduction of a second Higgs doublet, without it some of

the SM fermions would be massless. As in the SM the fields may be rotated

such that the Yukawas are diagonal, and since the third generation of SM

fermions is appreciably heavier than first two the Yukawas are often approx-

imated as YU ≈ diag(0, 0, yt), YD ≈ diag(0, 0, yb) and YE ≈ diag(0, 0, yτ).

The µ-term is a mass term for the Higgsinos and will also, through F-terms,

contribute to the scalar potential.

Expanding the superfields in WMSSM in their component fields gives us

the Feynman rules for the SM particles and their superpartners. Concen-

trating on the top Yukawa term we can write down three different couplings

all of size yt and we learn a very useful rule of thumb for understanding

couplings in the MSSM, see Fig. 3. Take any vertex in the SM and replace

two of the particles with their superpartners and this is a vertex in the

MSSM. This does not capture all the available couplings, for instance the

F-term for U c leads to a four-point Higgs-squark coupling that has no SM

counterpart, but does work for couplings involving at least one SM fermion

coming from the superpotential and the gauge coupling terms.

Exercise: Put the flavour and gauge indices back into Eq. (75), paying close

attention to SU(2) indices which are contracted with ǫαβ , and confirm the

signs.

In addition to these SM-like terms there are some other renormalis-

able operators allowed by the gauge symmetries that can be added to the
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Fig. 3. Top Yukawa couplings.

superpotential,

W∆B,L = κijk
1 QiLjD

c
k + κijk

2 LiLjE
c
k + κi

3L
iHu + κijk

4 Dc
iD

c
jU

c
k . (76)

However, the first 3 of these operators violate lepton number, and the last

is no better since it violates baryon number. Note that both κ2 and κ4 are

antisymmetric under i ↔ j because of the antisymmetry of the gauge in-

dices, one is contracted with ǫαβ and one with fabc. At the renormalizable

level in the SM baryon and lepton symmetries are accidental, operators

that would violate B or L are forbidden because of gauge symmetries; B

and L are separately violated by non-perturbative processes, only B − L

is conserved. In the MSSM this accident no longer happens because super-

partners allow us to construct the operators in Eq. (76). We could forbid

these operators by fiat, as we will see the superpotential has an interesting

non-renormalisation property so that even if there is no symmetry forbid-

ding these operators once their coefficients are set to zero they won’t be

generated in perturbation theory, but this is not appealing.

These operators could be forbidden if we introduced a new symme-

try, the price we have to pay for wanting to solve the hierarchy prob-

lem. For instance we could introduce an R-symmetry as inSec. 2.4 where

R[Q,U c, Dc, L, Ec] = 1/2 and R[Hu, Hd] = 1. This would forbid the W∆B,L

terms while allowing the WMSSM terms. However, as we will soon see, this

is too restrictive and would forbid mass terms for gauginos. Instead we

consider a discrete Z2 subgroup of the U(1) R-symmetry under which su-

perpartners flip sign and SM fields do not. Under this R-parityf the fields

have charge,

PR = (−1)3(B−L)+F (77)

Under the parity SM fields are even and superpartners are odd and it has

several interesting implications:

fEquivalently another possibility is matter parity where parity is assigned by PM =
(−1)3(B−L) .
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(1) Superpartners and SM particles cannot mix

(2) The lightest parity odd particle (LPOP) is a superpartner and the

lightest supersymmetric particle (LSP) is stable. It turns out that the

LSP is often a neutral state and has exactly the right properties to be

the DM!

(3) Superpartners must be made in pairs, and when they decay they even-

tually decay down to an odd number of LSPs. If this decay is prompt

(and the LSP is neutral) they leave a missing energy signature in de-

tectors.

This idea of parity oddness for new particles is so successful that it

has been borrowed many times for other BSM scenarios e.g. KK-parity

leading to LKPs of extra dimensions,7 T-parity and LTPs of Little Higgs

scenarios.8 In the rest of these lectures we will assume that R-parity is an

exact symmetry of the MSSM but it is also possible that it is broken, that

there is another symmetry that protects protons from decay or that the κ

are tuned to be small.9,10 If this were the case then SUSY would lose its

dark matter candidate and depending on the timescale for decay its missing

energy signature in colliders. To see how small the couplings to the light

quarks would have to be consider the case of κ1 and κ4 non-zero, then there

would be a tree-level diagram, involving squark exchange, that would lead

to proton decay. Although an exact calculation is complicated, we need to

know the details of the quark make-up of the proton, we can estimate the

proton lifetime,

τ−1 = Γ ∼ |κ1κ4|2
16π

m5
p

m4
q̃

⇒ τ ≈ |κ1κ4|−2
( mq̃

1 TeV

)4

× 10−11s . (78)

The proton lifetime is at least ∼ 1032 years implying that the relevant κ

have to be very small, |κ| <∼ 10−12.

Now that we have forbidden the bad renormalisable operatorsg we have

a fully supersymmetric version of the SM. A parameter count shows that

the number of parameters is one smaller than that in the SM since the

Higgs potential is entirely determined by the D-terms; we will discuss this

in more detail in Sec. 5. However, this is not a fully realistic model since

we know that the superpartners are not degenerate with their SM cousins.

To break this degeneracy requires us to break SUSY and will introduce a

gThere are higher dimension operators, such as QQQL, that can contribute in loops to
proton decay. Depending on the scale that suppresses these operators they too can be a
concern in supersymmetric theories.11
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multitude (105!) of new parameters.12 SUSY is great, breaking it is where

the trouble begins.

4. The MSSM - broken SUSY

The supertrace condition Eq. (65) on tree-level SUSY breaking predicts

superpartners lighter than the heaviest SM particle in each charge sector

of the SM, i.e. sleptons are lighter than the tau, squarks are lighter than

the top etc. This is clearly ruled out, which leads to the typical scenario

for introducing SUSY breaking into the MSSM. We introduce some hid-

den sector whose dynamics is such that the vacuum of this sector is not

supersymmetric13 but is sufficiently heavy that the supertrace condition is

not a concern. There are then some “messenger” fields which couple the

MSSM to the dynamical SUSY breaking sector. The SUSY breaking in this

dynamical SUSY breaking sector is then mediated to the MSSM through

the messengers. For instance in gauge mediation14 the messengers have SM

gauge quantum numbers, whereas in gravity mediation the messenger fields

are unspecified fields whose mass is at the Planck scale. Integrating out the

messenger fields results in couplings between the SUSY breaking and the

MSSM, the size of these couplings depends on the details of the mediation

mechanism - a subject worthy of a series of TASI lectures itself.15 How-

ever, the list of SUSY breaking operators is finite and one can parametrise

all possibly combinations by considering just these operators, which we do

below.

4.1. Spurions

For the purpose of these lectures, and much of SUSY phenomenology, it is

sufficient to carry out a “spurion” analysis. Spurion analyses are a useful

tool when one wishes to keep track of how a symmetry is broken, any

parameter that breaks a symmetry can be elevated to the status of a field

and the symmetry restored by assigning the appropriate transformation

properties to the field. The field is not dynamical, its sole purpose is to

get a vacuum expectation value which breaks the symmetry, restoring the

parameter to the Lagrangian, but in so doing it helps us keep track of

allowable operators. We have seen this before in the SM, at energies below

the W mass we write down the QCD Lagrangian including mass terms for

the quarks. But in reality, once we learn about SU(2)W , we realise that

these quark masses break SU(2)W which can be restored if the mass is

thought of as transforming under the SU(2)W symmetry. In this case the
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spurion is nothing more than the SM Higgs that we soon hope to discover.

In SUSY there need not be a physical particle associated with the spurion

or it may be too heavy to ever be accessible but the restoration of SUSY

will still be a useful tool.

In SUSY the available spurions whose VEV break the symmetry without

also breaking Lorentz invariance are the F-term of a chiral superfield, X =

θ2F , or the D-term of a, U(1), vector superfield, W ′
α = θαD. With these

in hand we can ask what are the leading operators involving these spurions

that will lead to SUSY breaking terms in the Lagrangian. In the MSSM

the only relevant spurion is X and the important operators, generated at

the messenger scale (M), are:

Scalar mass

cij
∫

d4θ
X†X

M2
Q†

iQj , (79)

which leads to a scalar mass2 term in the Lagrangian of

−
(

m2
)ij

q̃∗i q̃j , (80)

with
(

m2
)ij

= −cij(FX/M)2. This operator exists whether X is a

MSSM singlet or not. The cij can have new flavour structure and if the

sfermions are not well above the weak scale this can potentially lead

to visible flavour violating effects, we will discuss this more in Sec. 6.1.

Certain mediation mechanisms, for instance gauge mediation, predict

that cij ∝ δij which avoids this problem. In gravity mediation there is

no such prediction but nonetheless it is often assumed that the scalar

masses generated at the Planck scale are flavour diagonal, primarily to

avoid these strong constraints.

Gaugino mass

1

2
ci

∫

d2θ
X

M
WαWα , (81)

which leads to a Majorana gaugino mass term in the Lagrangian of

−1

2
miλ̃

αλ̃α (82)

where i here runs over the three gauge groups of the MSSM, and

mi = −ciF/M . This operator can only be written down if X is a

MSSM singlet. If this is not the case one would expect the scalar masses

Eq. (79) to be far larger than the gaugino masses Eq. (81).
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A term
∫

d2θ
X

M

(

Aij
u U

c
i QjHu −Aij

d D
c
iQjHd −Aij

e E
c
iLjHd

)

, (83)

which leads to scalar trilinear terms in the Lagrangian of

aij
u ũ

c
i q̃jhu − aij

d d̃
c
i q̃jhd − aij

e ẽ
c
i ℓ̃jhd (84)

with aij = AijF/M . As for the gaugino masses this operator requires

that the spurion is a MSSM singlet. Furthermore, the A terms are

another new source of flavour violation and so have strong constraints

on the sizes of the flavour off-diagonal terms.

b term

B

∫

d4θ
X†X

M2
HuHd , (85)

which leads to a scalar mass2 term in the Lagrangian of

−bhuhd , (86)

with b = −B(F/M)2. If X is a singlet then a µ term, a supersymmet-

ric parameter, can also be generated from X†HuHd/M in the Kähler

potential. For successful electroweak symmetry breaking, as we will dis-

cuss further in Sec. 5, the supersymmetric mass parameter, µ, must be

around the weak scale and the SUSY preserving and breaking param-

eters related by b ∼ µ2. If both these two operators are generated with

comparable coefficients, as can occur, for example, in gravity mediated

theories,16 then this provides a solution to the µ-b problem.

These are the leading operators discussed in the context of the MSSM.

There are higher dimension operators that are typically generated with

small coefficients at the messenger scale. In the absence of MSSM gauge

singlets these additional operators have also been shown17 to be “soft” h.

They correspond to non-holomorphic combinations of MSSM fields, e.g.

X†QH†
uD

c/M2 and X†XQH†
uD

c/M3. Although they are typically small

at the messenger scale these operators may be generated through renor-

malisation group running and can lead to interesting “wrong-type” Higgs

couplings.

If the field content of the MSSM is extended then there are more op-

erators that can be written down. One interesting possibility, that uses

a D-term spurion, is that of supersoft SUSY breaking.18 The MSSM is

hThey don’t generate quadratic divergences, only logarithmic ones.
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extended by adding chiral superfields, Ai, that transform in the adjoint

representation of U(1), SU(2) and SU(3), for i = 1, 2, 3, respectively. This

now allows us to write down Dirac gaugino mass terms:

Supersoft term

√
2

∫

d2θ
W ′α

M
W i

αA
i , (87)

which results in a gaugino-adjoint Dirac mass, a mass term for (the real

part of) the scalar adjoint, and a scalar tri-linear term,

−mDλ̃iãi −m2
D(ai + a∗i )

2 −
√

2mD(ai + a∗i )





∑

j

gkq
∗
j taqj



 , (88)

where mD = D′/M and q represents all MSSM fields charged under

gauge group i. Models with just a D-term spurion have interesting

renormalization properties.18–24

4.2. Supersymmetry breaking scenarios

Many of the operators described above have coefficients that are complex

3 × 3 matrices in flavour space, so the full list of soft-SUSY breaking op-

erators possible in the MSSM is long,12 all-in-all O(100) scales, angles and

phases are involved. This is obviously too vast a parameter space to explore

fully, and given constraints from experiment we know that much of it, e.g.

parts with large flavour violation, is already ruled out. Luckily most of the

mediation mechanisms relate many of the operators, and the soft SUSY

breaking terms are defined by a handful of parameters at the messenger

scale.

One common simplifying assumption, when assuming gravity mediation,

is that there are common scalar and fermion masses, and that the A terms

are proportional to the corresponding Yukawas with the same constant of

proportionality. At the messenger scale, MPl, this means,

m1 = m2 = m3 = m1/2

m2
q̃ = m2

ũc = m2
d̃c = m2

ℓ̃
= m2

ẽc = m2
011 and m2

hu
= m2

hd
= m2

0

au = a0Yu, ad = a0Yd, aL = a0YL (89)

b = b0 µ .

This common assumption often goes under the name of minimal super-

gravity (MSUGRA) or constrained MSSM (CMSSM). As we will see later,
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the requirement of correct electroweak symmetry breaking, after using the

renormalisation group evolution of MSSM parameters, leads to this bound-

ary condition often being defined in terms of m0, m1/2, a, tanβ and sgnµ.

This boundary condition shrinks parameter space from ∼ 100 dimen-

sional to 5 dimensional since it is also usually assumed that all the scales

are real, the 5 parameters are: m2
0, m1/2, a0, b0, µ. This combined with

the flavour structure of the scalar masses2 and A terms avoids flavour

and CP-violation constraints. Since the messenger scale is MPl the F-

term of the SUSY breaking spurion must be at the intermediate scale

F 1/2 ∼ 1010 − 1011 GeV so that m1/2 ∼ F/MPl ∼ 100 GeV.

In gravity mediation there is little top-down motivation that explains the

arrangement of diagonal scalar mass2, or A terms. Gauge mediation, on the

other hand, is flavour blind and so by itself does not lead to a problem with

FCNCs. If the messengers are at the Planck scale then one would expect

that in addition to flavour-diagonal gauge mediated contributions there

will also be flavour-violating gravity mediated contributions. Thus, gauge

mediation is usually assumed to have light messengers (M >∼ 100 TeV) in

order to avoid flavour issues. In gauge mediation the gaugino masses are

generated at one loop and the scalar masses2 at two loop so that the actual

mass scales are comparable. Furthermore, the A terms, which have mass

dimension one, are generated at two loops and so are negligible. Thus the

boundary condition at the messenger scale, assuming the messengers are

simply a 5 + 5 pair - so called minimal gauge mediation, for the gauginos

(mi) and a scalar (m2
j) are:

mi =
αi

4π

F

M

m2
j = 2

(

F

M

)2 [
(α3

4π

)2

C3(j) +
(α2

4π

)2

C2(j) +
(α1

4π

)2

C1(j)

]

(90)

au = ad = ae = 0 .

The Ci(j) are the quadratic Casimirs for each group, they are given by

(N2 − 1)/2N for SU(N) and 3Y 2/5 for hypercharge and 0 if the scalar is

not charged under that group. Notice that I have not specified the values for

µ or b since these terms are not generated by minimal gauge mediation. For

low scale gauge mediation the SUSY breaking F-term is far smaller than

that in gravity mediation, F 1/2 ∼ 104 GeV. See Patrick Meade’s lectures

in this volume for a more detailed discussion of gauge mediation Ref. 14.

So far we have been agnostic as to the source of the supersymmetry

breaking F-term contained in the spurion, not an unreasonable approach
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since we are most interested in learning about MSSM phenomenology. One

possibility for the origin of SUSY breaking is an O’Raifeartaigh model of

the type described in Sec. 2.5. However, in these models the scale of SUSY

breaking is determined by the scale appearing in the superpotential, which

is put in by hand and, although explaining the stability of the weak scale,

it does not explain its origin i.e. why the weak scale is so far below the

Planck, or GUT, scale. It would be nice if there were some mechanism

whereby a scale far below the GUT scale is generated dynamically and

which is involved in SUSY breaking.

We are familiar with a low scale, Λ, being generated from a theory

that is perturbative at some high scale, through the phenomenon of di-

mensional transmutation. For example, in QCD non-perturbative dynam-

ics generates a scale from a theory that is weakly coupled at the Planck

scale, Λ ∼ MPle
−8π2/g2

, and this scale is far below the Planck scale due

to the exponential. Similar non-perturbative corrections to the superpoten-

tial of a theory that is classically supersymmetric can lead to SUSY being

broken dynamically, and the associated scale is far below the Planck scale,

potentially explaining the origin of the electroweak scale. Many examples

of dynamical supersymmetry are known, it is a rich subject that will be

discussed in greater detail in David Shih’s lectures.13

4.3. The Goldstino and gravitino

In Sec. 2.5 we analysed a simple O’Raifeartaigh model of SUSY break-

ing and found that there is a massless Weyl fermion in the spectrum, we

now extend this result to a general SUSY gauge theory in which SUSY is

spontaneously broken. The fermion mass matrix in the basis (λa, ψi) is,

Mfermion =

(

0
√

2〈φ∗〉T a
√

2〈φ∗〉T a 〈W ij〉

)

(91)

where T a are the generators of the gauge group and W ij = ∂2W/∂Φi∂Φj .

This mass matrix has an eigenvector with zero eigenvalue, namely

G̃ =

(

〈Da〉/
√

2

〈Fi〉

)

. (92)

Exercise: Show that Eq. (92) is indeed a zero eigenvector. It is useful to

recall the condition for gauge invariance of the superpotential, and that in

the ground state ∂V/∂φi = 0.



June 17, 2010 16:50 WSPC - Proceedings Trim Size: 9in x 6in final

30

This massless fermion is the Goldstino, it is built from fields of the

SUSY breaking sector, and will always be in the spectrum when SUSY is

spontaneously broken. The Goldstino is entirely analagous to the Goldstone

boson of a spontaneously broken bosonic symmetry, but is a fermion because

the symmetry being broken has fermionic generators. Just as the Goldstone

boson will be eaten, by the gauge boson making it massive, if the global

symmetry is gauged so the Golsdstino will be eaten if SUSY is extended to

a local symmetry. Since SUSY is a spacetime symmetry making it a local

symmetry necessitates gauging of Poincare symmetry and so introduces

gravity and turns supersymmetry into supergravity. The supersymmetric

partner of the spin 2 graviton is a spin 3/2 gravitino. This gravitino, Ψ̃α
µ,

will eat the Goldstino and become massive. The mass of the gravitino is

related to the breaking of SUSY25 ,

m2
3/2 =

|F |2 + 1
2D

2

3M2
Pl

. (93)

For gravity mediated SUSY breaking the messenger scale is MPl and

comparing Eq. (90) and Eq. (93) we see that the gravitino is comparable

in mass to the SM superpartners. For gauge mediation the messenger scale

is far below MPl and the gravitino is far lighter, m3/2 >∼ 1 eV, than the

SM superpartners. From Eq. (77) we see that the gravitino is odd under

R-parity and so in gauge medition is the LSP and will be the final endpoint

of all superpartner decays.

5. Higgs sector of the MSSM

Due to holomorphy of the superpotential the MSSM is a type II two Higgs

doublet model i.e. one Higgs, Hu, couples to up-type quarks and the other,

Hd, couples to down-type quarks and leptons Eq. (75). Furthermore, SUSY

enforces various relations between the parameters of the general type II

scalar potential, for a discussion about general Higgs models see, for exam-

ple, Ref. 26.

5.1. Electroweak Symmetry Breaking

There are three contributions to the Higgs scalar potential: those from F

terms, D terms and SUSY breaking,

VHiggs = VF + VD + Vsoft . (94)

From Eq. (34) and Eq. (75) we find that,

VF = |µ|2
(

|hu|2 + |hd|2
)

. (95)
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There are D-term contributions Eq. (45) from both U(1)Y and SU(2)W ,

Da
2 = −g (h∗uτ

ahu + h∗dτ
ahd) D1 = −g

′

2

(

|h+
u |2 + |h0

u|2 − |h0
d|2 − |h−d |2

)

,

(96)

where τa = σa/2 are the generators of SU(2)W , g′ = e/ cos θW and g =

e/ sin θW . Using Eq. (46), and carrying out some algebra, this gives

VD =
g2 + g′2

8

(

|h+
u |2 + |h0

u|2 − |h0
d|2 − |h−d |2

)2
+
g2

2

∣

∣h+
u h

0∗
d + h0

uh
−∗
d

∣

∣

2
.

(97)

Exercise: Confirm that Eq. (96) does indeed lead to Eq. (97).

Finally there are the soft terms generated by SUSY breaking,

Vsoft = m2
hu
|hu|2 +m2

hd
|hd|2 + (b ǫαβ h

α
uh

β
d + h.c.) . (98)

If electroweak symmetry breaking is to work correctly in the MSSM then the

vacuum must break SU(2)W × U(1)Y to U(1)Q, which means the charged

Higgses must not get a VEV. To see that this can indeed happen note

that one can carry out an SU(2)W rotation on Hu such that any VEV in

the scalar lies entirely in the neutral component. Then the minimisation

condition ∂V/∂h+
u = 0 evaluated at the minimum with 〈h+

u 〉 = 0 implies

that 〈h−d 〉 = 0, a good thing. This means that we can concentrate on just

the neutral components of the Higgses,

V =
(

|µ|2 +m2
hu

)

|hu|2 +
(

|µ|2 +m2
hd

)

|hd|2

−(b h0
uh

0
d + h.c.) +

g′2 + g2

8

(

|h0
u|2 − |h0

d|2
)2

. (99)

Also, it is always possible to make a field rotation such that b is real and

positive, which means that 〈h0
uh

0
d〉 is also real and positive. Thus, the two

Higgses must have VEVs with equal and opposite phase, which can be set

to zero by carrying out a U(1)Y rotation since they transform with opposite

sign under hypercharge. The upshot of all of this is that in the MSSM CP

and electric charge are not spontaneously broken.

To be sure that electroweak symmetry is indeed broken at least one of

the Higgs bosons must acquire a VEV which means the origin cannot be

a stable minimum of the potential. We look at the mass matrix near the

origin,

(

h0∗
u h0∗

d

)

M2
h

(

h0
u

h0
d

)

=
(

h0∗
u h0∗

d

)

(

|µ|2 +m2
hu

−b
−b |µ|2 +m2

hd

)(

h0
u

h0
d

)

, (100)
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in order for the origin to be unstable the mass matrix, M2
h, must have

either one or two negative eigenvalues. These two possibilities correspond

to detM2
h < 0 or det M2

h > 0 and trM2
h < 0 respectively. In addition

to the origin being unstable we also require that the potential does in fact

have a minimum, i.e. is is not unbounded from below. Clearly the quartic

term is always positive and at generic large field value it will stabilise the

potential. However, there is a special direction in field space, called a D-flat

direction, in which the quartic term disappears, h0
u = h0

d. The requirement

that along this direction the potential does not run away is,

2|µ|2 +m2
hu

+m2
hd
> 2b . (101)

Since b > 0 this rules out the possibility of trMh < 0. Instead we will have

one negative eigenvalue if,

(|µ|2 +m2
hu

)(|µ|2 +m2
hd

) < b2 . (102)

Taken together Eq. (101) and Eq. (102) are the requirements for correct

electroweak symmetry breaking. For a non-zero b term both Higgses will

acquire a vev,

〈h0
u〉 = vu 〈h0

d〉 = vd , (103)

and electroweak symmetry will be broken. To get the correct W and Z

masses requires that the VEVs satisfy the relation,

v2
u + v2

d = v2 =
2M2

Z

g′2 + g2
≈ (174 GeV)2 . (104)

One can define the ratio of the VEVs as tanβ ≡ vu/vd. The minimisation

conditions then lead to two conditions on the various parameters of the

tree-level potential,

m2
hu

+ |µ|2 − b cotβ − M2
Z

2
cos 2β = 0

m2
hd

+ |µ|2 − b tanβ +
M2

Z

2
cos 2β = 0 . (105)

This again illustrates the µ-problem, since satisfying Eq. (105) requires

the SUSY breaking parameters m2
hu

, m2
hd

and b are related to the SUSY

preserving parameter µ. Without precise cancellations they should all be

around the weak scale, which is reasonable for SUSY breaking parameters

but the SUSY preserving µ-term could have value anywhere between the

weak and Planck scales. Using these conditions also relates various SUSY

breaking parameters so that the SUSY breaking inputs of Eq. (89) are often
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quoted as m0, m1/2, A, tanβ and sgn(µ), which is four parameters and a

discrete choice.

The region of viable Higgs soft-mass parameter space is shown in Fig. 4,

the region is contained between the two coloured lines. Above the upper

(blue curved) line the Higgs mass matrix has only positive eigenvalues and

the Higgses do not get a VEV, corresponding to violating Eq. (102). While

below the lower (red straight) line the Higgs potential is unbounded from

below and the Higgs potential has no stable minimum, violating Eq. (101).

Thus, the interesting space lies between these two curves and is separated

into two distinct regions. The region with large m2
hd

+ |µ|2 and small m2
hu

+

|µ|2 has tanβ ≥ 1, Eq. (105), and the other region has tanβ ≤ 1; lines of

constant tanβ are dashed in the plot. As we will see shortly correct fermion

masses require us to be in the tanβ ≥ 1 region.

Fig. 4. The viable region of Higgs soft-mass parameter space lies between the red
(straight solid) and blue (curved solid) lines, corresponding to the bounds Eq. (101)
and Eq. (102) respectively. Above the blue line there is no electroweak symmetry break-
ing and below the red line the potential is unbounded from below. The dashed lines are
lines of constant tan β and the arrows denote the direction in which tan β increases, the
red line corresponds to tan β = 1.

5.2. Higgs masses

We are now in a position to talk about the Higgs bosons in the MSSM. With

two doublets there are 8 real degrees of freedom, 3 of which are eaten (just

as in the SM) to give mass to the W± and Z, leaving 5 physical degrees of
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freedom. These are two real scalars, h0 and H0, with h0 lighter than H0, a

pair of charged Higgses h± and one CP odd scalar, A0. Their masses are

M2
A0 =

2b

sin 2β
= 2|µ|2 +m2

hu
+m2

hd

M2
h± = M2

A0 +M2
W (106)

M2
h0,H0 =

1

2

(

M2
A0 +M2

Z ∓
√

(

M2
A0 −M2

Z

)2
+ 4M2

ZM
2
A0 sin2 2β

)

Notice that the masses of the heavy Higgses, i.e. all Higgses all except h0,

scale with the mass of the psuedoscalar. This leads to a particular limit,

MA0 ≫MZ dubbed the decoupling limit, in which the heavy Higgses form

a nearly degenerate SU(2) doublet and decouple from low energy physics,

the remaining light Higgs, h0, behaves very much like the Higgs of the SM.

A large region of SUSY parameter space is in the decoupling limit.

Exercise: Expand Eq. (99) around the minimum,

hu =

(

h+
u

vu + h0
u

)

hd =

(

vd + h0
d

h−d

)

, (107)

and show that the masses for the Higgses are given by Eq. (106). Work out

the mass eigenstates in terms of the gauge eigenstates.

So far we have been working at tree level, but as we can see from

Eq. (106) this is already ruled out by LEP Higgs searches since the mass of

the lightest Higgs, h0, is bounded above by,

Mh0 ≤MZ | cosβ| . (108)

This is because in supersymmetric theories the Higgs self-couplings are de-

termined by the D-terms and are related to the gauge couplings of the SM,

but once SUSY is broken there will be corrections. The largest corrections

will come from particles that have the largest coupling to the Higgs, typi-

cally the top and stop. There are one-loop diagrams involving the stop and

top that will give corrections to the Higgs quartic term in the potential,

these diagrams would of course cancel if SUSY was unbroken and the stop

was degenerate with the top, it is the partial failure of this cancellation

that leads to the corrections. We will see in Sec. 6 that there are two stop

states that may have large mixing, which complicates the calculation of this
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correction, but approximately speaking,

M2
h0 → M2

h0

∣

∣

tree
+

3

4π2
y2

tm
2
t log

(

M2
t̃

M2
t

)

, (109)

this raises the upper bound on the Higgs which now depends on the mass

of the stop squark. However, in addition to this loop correction there are

corrections to the Higgs soft mass term that are logarithmically sensitive to

the SUSY breaking scale, M , at which superpartner masses are generated,

δm2
Hu

= − 3y2
t

8π2
M2

t̃ log

(

M

Mt̃

)

. (110)

Thus, one cannot make the stops too heavy in order to raise the Higgs

mass without reintroducing the hierarchy problem that SUSY was first

introduced to solve. This competition between logarithmic and quadratic

sensitivity to the stop mass, and the requirement of evading the LEP bound

on the Higgs mass leads to the “SUSY little hierachy problem”.27 There

are many proposed solutions to this problem, all of which require extending

the MSSM, see for example.28–41 If instead we limit the amount of tuning

and impose an upper bound on the stop mass of ∼ 1 TeV then there is a

new upper bound on the Higgs mass of,

Mh0 <∼ 130 GeV . (111)

5.3. Higgs Yukawa couplings

The values of the Yukawa couplings in the MSSM are different from those in

the SMi. Concentrating on the two heaviest quarks, the masses are related,

at tree level, to the superpotential Yukawa terms by,

mt = ytvu = ytv sinβ = ytv
tanβ

√

1 + tan2 β
(112)

mb = ybvd = ybv cosβ = ybv
1

√

1 + tan2 β
. (113)

Requiring the Yukawa couplings for top and bottom both remain perturba-

tive places limits on the range of tanβ. As we will see, the renormalization

group evolution of these couplings is such that their values tend to increase

from their value at the weak scale, determined by Eq. (113), as we run

iSince one Higgs is responsible for up-type quark masses and one for down-type quarks
and leptons it appears that both must acquire a VEV. For an alternative approach,
where at tree level only 〈hu〉 6= 0, see Ref. 42.
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up to the GUT scale. Requiring that these couplings remain perturbative

all the way up to the GUT scale, a strong but not entirely unreasonable

requirement, results in the range 1 <∼ tanβ <∼ 60.

6. Superpartner Mass Spectra

We now turn to the masses of the superpartners. After electroweak symme-

try breaking the neutral components of the Higgsinos, h̃u and h̃d, will mix

with the bino, B̃, the partner of the U(1)Y gauge boson and the wino, W̃ 0,

the partner of the neutral component of the SU(2)W gauge boson. The mass

eigenstates are called neutralinos and are variously denoted as Ñi, χ̃
0
i , Z̃i,

but in all cases i labels the mass eigenstates from lightest, i = 1 to heaviest

i = 4. Extensions of the MSSM will naturally have more neutralinos.

We define ΨT
0 = (B̃, W̃ , h̃d, h̃u) which has a mass term in the Lagrangian

of − 1
2ΨT

0MNΨ0 + c.c. with

MN =









m1 0 −cβsWMZ sβsWMZ

0 m2 cβcWMZ −sβcWMZ

−cβsWMZ cβcWMZ 0 −µ
sβsWMZ −sβcWMZ −µ 0









(114)

The real eigenvalues of this complex symmetric matrix can be found by

diagonalising, Mdiag
N = U∗MNU

†. If the off diagonal terms due to elec-

troweak symmetry breaking are small relative to the other entries in the

matrix then the mixing is small and the lightest neutralino will be mostly

bino-, Higgsino- or Wino-like.

The charged components of the same fields will also mix. Define ΨT
± =

(W̃+, h̃+
u , W̃

−, h̃−d ) which has a Lagrangian term − 1
2ΨT

±MCΨ± with

MC =









0 0 m2

√
2sβMW

0 0
√

2cβMW µ

m2

√
2cβMW 0 0√

2sβMW µ 0 0









. (115)

It is easier to work with the non-trivial 2 × 2 block of MC , M . Since M is

not symmetric it is diagonalised by two different unitary transformations,

Mdiag = L∗MR†. The masses of the charginos, denoted by C̃i, χ̃
±
i or W̃±

i ,

are given by

MC1,C2
=

1

2

[

|m2|2 + |µ|2 + 2M2
W

∓
√

(|m2|2 + |µ|2 + 2M2
W )

2 − 4|µm2 −MW s2β|2
]

. (116)
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Given the issues with generating the correct size for the µ-term, discussed

earlier, one might wonder if these problems are removed if the µ-term is

somehow forbidden. However, notice that µ = 0 would lead to both a

massless neutralino and a chargino below the W mass, which is ruled out

by LEP searches. However, extensions of the MSSM can be built that do

not have a µ-term,43 or where the µ-term is generated from SUSY breaking.

The later case is a commonly discussed extension of the standard model:

the exension of the MSSM by a gauge singlet chiral superfield, S, called the

next-to-minimal supersymmetric standard model (NMSSM).

Exercise: By finding the eigenvalues of M †M confirm Eq. (116).

The sfermion masses receive contributions from various sources. I will

discuss the case of the stops, the other squarks and sleptons masses follow in

analogous fashion, and I will also ignore, for now, potential flavour violating

contributions to the mass matrices. Working in the basis ΨT
t = (q̃3, ũ

c
3) the

stop mass matrix is

Mt =

(

M2
t +m2

q̃3
+ ∆q̃3

Mt(A
∗
t − µ cotβ)

Mt(At − µ cotβ) M2
t +mũc

3
+ ∆ũc

3

)

. (117)

The soft scalar masses m2
q̃3

and mũc
3

arise from SUSY breaking as described

in Eq. (79). The ∆f̃ terms arise from the SU(2)W and U(1)Y D-terms in

the scalar potential. For example the relevant piece of the U(1)Y D-term is

− g′

2

(

|h0
u|2 − |h0

d|2 +
∑

i f̃
∗
i Yif̃i

)

. In general for a sfermion, f̃ , the D-term

contributions to the mass matrix are

∆f̃ =
(

T3 −Q sin2 θW

)

f̃
cos 2βM2

Z . (118)

For third generation sfermions like the top there are F-term contributions,

from the F-terms for U3, Q3 and HU , these give the contributions pro-

portional to µ in Eq. (117). Finally there are A-term contributions (see

Eq. (84)) where in Eq. (117) I have followed the oft-used convention of

ai = yiAi. Similar matrices exist for the other squark and sleptons, how-

ever for down-type squarks and sleptons the down-type Higgs F-terms is

involved, thus one must also make the replacement tanβ ↔ cotβ. The mass

matrix Eq. (117) must be diagonlised and the resulting mass eigenstates are

denoted t̃1 and t̃2 with the convention that m2
t̃1
< m2

t̃2
.

The only remaining superpartner left to discuss is the gluino. Since it is

the only octet of colour it has nothing to mix with and its mass is simply

given by M3.
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6.1. Flavour and CP violation

In general the squark and slepton masses are 3×3 matrices in flavour space,

and there is no reason a priori for the squark and slepton masses to be diag-

onal in the same basis as the quark and lepton Yukawa matrices. These mass

matrices introduce a new source of flavour violation beyond the flavour vio-

lation in the SM which comes from the CKM matrix, and neutrino mixing.

Furthermore, there is no reason for all the entries in these matrices to be

real, or for the phases in other SUSY parameters such as gauginos masses

to be zero. Thus there are additional sources of CP violation introduced by

the MSSM.

These sources of flavour and CP violation can lead to observable effects,

such as flavour changing neutral currents (FCNCs) and electric dipole mo-

ments (EDMs), respectively. Searches for FCNCs and EDMs in various sys-

tems place strong constraints on the size of the off-diagonal entries in the

squark and slepton mass matrices and the size of the CP-violating phases

in MSSM parameters. Let us consider two such processes.

Although FCNCs do not occur at tree-level in the SM they can occur

at one loop. In Fig. 5, we consider the case of K0 − K̄0 mixing, occurring

through box diagrams. Since the CKM matrix is unitary the diagram van-

ishes when the quarks are massless. The leading contribution to K − K̄

mixing in the SM is quadratic in quark mases, this is the GIM mecha-

nism.44 In Fig. 5 the fact that the leading effect is proportional to quark

mass (squared) is denoted by the crosses on the internal quark lines. Since

the quark masses are small compared to the W mass, the top has very small

coupling to the first generation and is ignored here, it is useful to treat the

quarks as having massless propagators and the mass as being a coupling

that can be inserted on a fermion line, the mass insertion technique.45 It is

easy to see that the mass insertion picture is just a rewriting of the usual

fermion propagator, but it is nonetheless a useful tool,

i

/p−m
=
i

/p
+
i

/p
(−im)

i

/p
+ . . . (119)

In the SM the effective four-quark operator generated by the box diagrams

has coefficent

α2
W

m2
c

M4
W

|Vcs|2|Vcd|2 , (120)

which has mass dimension −2 as expected.

Now turning to the MSSM, there will be additional contributions to the

four-quark operator from diagrams that are the supersymmetric version of
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the SM diagram i.e. box diagrams involving Winos and squarks and these

will be large unless there is a super-GIM mechanism, namely that the first

and second generation squarks must be nearly degenerate. Furthermore

there are additional diagrams, that are often larger since they only involve

strong couplings, Fig. 5. Now, however, the flavour violation is a result of

off-diagonal squark mass entries, denoted by a cross. Making a simplifying

assumption that all superpartners have the same mass,Msusy, and denoting

the off-diagonal entries by ∆m2, we can estimate the contribution of Fig. 5

to the four-quark operator,

α2
3

(

∆m2

M2
susy

)2
1

M2
susy

. (121)

Depending on whether the external fermions are left- or right-handed the

mass insertions will come from m2
q̃ or m2

ũ, m2
d̃
. If there are off-diagonal

A-terms then there will be LR squark mixing.

The observed mass splitting between KL and KS is approximately ex-

plained by SM effects and so this places a bound on the size of the MSSM

contribution

∆m2

M2
susy

<∼ 10−3 Msusy

500 GeV
. (122)

So without pushing the SUSY scale very high, and so removing the moti-

vation for SUSY, we see that this bound requires small off-diagonal terms

in the (d̃, s̃) block of the squark mass2 matrix. Similar, but weaker, con-

straints exist for the other off-diagonal terms of the squark mass matrix2.

These bounds are often quoted46,47 as bounds on the dimensionless ratio

δ ≡ ∆m2/M2
susy.

In addition to these ∆F = 2 processes in the quark sector, there are

bounds on off-diagonal entries coming from ∆F = 1 processes such as b→
sγ, b→ sℓ+ℓ−, etc and µ → eγ. For more detail about flavour constraints

on the MSSM and other theories of BSM physics see Gilad Perez’s lectures

in this volume.48

Exercise: The fact that neutrinos oscillate leads to lepton flavour violation.

Assume there is maximal mixing between two flavours of neutrinos (να and

νβ), a good approximation for reality, and estimate the induced branching

ratio of ℓα → ℓβγ. Confirm that this is not an effect we need worry about

for the foreseeable future.

There are many possibilities for new CP-violating phases in the parame-
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Fig. 5. SM and MSSM processes contributing to K − K̄ mixing.

ters of the MSSM, the gaugino masses, the µ and b terms, and A-terms. Not

all the phases are physical, some can be removed by various field rotations

but there are still a plethora of new sources of CP violation. Inclusion of

these physical phases alters the mass matrices and the corresponding mass

eigenstates, e.g. Eq. (114) and Eq. (115), and will also affect the couplings

of the superpartners.

These phases are further constrained by the experimental bounds on

electric dipole moments (EDMs) of the electron and neutron. There are

strong constraints on both EDMs, for instance the present bound49 on the

electron EDM coming from a search for T violation in 205Tl is,

|de| ≤ 1.6 × 10−27e cm , (123)

at 90% confidence. The phases in SUSY parameters can contribute to these

EDMs. For instance, the electron EDM receives contributions from loop

diagrams involving the insertion of a complex parameter, such as a complex

A-term,Fig. 6. We can estimate the contribution of this to the EDM of the

electron as,

dsusy
e ≈ e

α

4π

me

m̃2
arg(A) . (124)

Where I have assumed that the A-term is proportional to the Yukawa and

that all SUSY scales are comparable and of size m̃. Requiring this to be

smaller than the bound Eq. (123) leads to the requirement that

arg(A) < 10−2

(

m̃

500 GeV

)2

. (125)

CP violation is strongly constrained unless one wishes to raise the scale of

the superpartners.

It seems that low energy constraints such as FCNCs and EDMs pick out

a particular region of SUSY parameter space. Thankfully there are many
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models of SUSY breaking that predict we lie in exactly this region. See

Patrick Meade’s lectures in this volume for a detailed discussion of one of

these mechanisms of SUSY breaking, gauge mediation.14

Fig. 6. MSSM contribution to electron EDM, the photon is attached to the loop in all
possible ways.

7. RGEs

In Sec. 4 we discussed the generation of SUSY breaking parameters at a

high scale, the messenger scale, whereas in Sec. 6 we discussed the masses

of the superpartners at the weak scale. The natural tool for relating the two

is renormalisation. I will only discuss one-loop renormalisation equations,

for more details and two loop expressions see Ref. 50.

7.1. Gauge couplings

Since the normalisation of the generator of a U(1) group is arbitrary, the

physical quantity coupling × charge must remain fixed, we are free to rescale

the U(1)Y gauge coupling. A convenient choice is g1 =
√

5/3g′ which would

be the normalisation if the U(1) were embedded in SU(5) or SO(10), in

addition we define g2 = g and g3 = gs. The one-loop renormalisation group

equations which describe how the gauge couplings evolve with scale, µ, are

d

dt
α−1

i = − bi
2π

, (126)

with t = log µ/Λ. The coefficients, bi, are determined by the charges of the

fields. For SU(N) groups they are,

b =
11

3
N − 2

3

∑

fermions

C(rf ) − 1

3

∑

bosons

C(rb). (127)

For a fundamental (adjoint) representation C = 1/2 (N) and for a repre-

sentation with charge Q under a U(1) group C = Q2.
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In a supersymmetric SU(Nc) gauge theory with Nf pairs of fields

(Q, Q), transforming in the fundamental representation, Eq. (127) takes

on the simple form,

b = 3Nc −Nf . (128)

Thus in the MSSM the coefficients are bi = (b1, b2, b3) = (−33/5,−1, 3) to

be compared with those of the SM, bi = (−41/10, 19/6, 7).

Exercise: Solve the gauge coupling RGEs for both the SM and the MSSM,

starting from the weak scale where the gauge couplings are known. How

does unification compare for the two cases, both in terms of the scale of

closest approach and in terms of the size of the triangle at this scale - a

measure of the success of unification? (cf Fig. 2).

7.2. Superpotential terms

The renormalisation group equations for superpotential terms have a very

interesting feature, they are all multiplicatively renormalised. Thus if a tree-

level parameter, such as the µ term, is small quantum corrections will not

make it large, even after SUSY breaking. This result follows from holomor-

phy51 of the superpotential and can be proven using the spurion techniques

of Sec. 4, it has also been proven diagrammatically.52

One treats the parameters in the superpotential as chiral superfields

that acquire a scalar VEV. Allowing these spurions to transform restores

some global symmetries. The charge assignments of the spurions and the

requirement that these fields always appear holomorphicaly in the superpo-

tential forbid the superpotential from being renormalised in perturbation

theory. For more detailed discussion of this remarkable result see for exam-

ple, Ref. 15,53,54. Although the superpotential will not be renormalised in

perturbation theory, there can be non-perturbative corrections which are

critical to the dynamics of SUSY breaking in many models.

Unlike the the superpotential, the Kähler potential will be renormalised

in perturbation theory so the superfields will have a wavefunction renor-

malisation. As a result of the wave function renormaliation the physical

couplings will be renormalised, even though the superpotential is not, but

only by these wavefunctions. Consequently the running of the superpoten-

tial terms is entirely determined by the anomalous dimensions of the fields

involved in the coupling. We illustrate this by writing down the one-loop

equations for the top Yukawa and the µ term, for the complete set of RGEs
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(up to two loops) see for example Ref. 50,

dyt

dt
=

yt

16π2

(

6|yt|2 + |yb|2 −
16

3
g2
3 − 3g2

2 − 13

15
g2
1

)

dµ

dt
=

µ

16π2

(

3|yt|2 + 3|yb|2 + |yτ |2 − 3g2
2 − 3

5
g2
1

)

(129)

7.3. Gaugino masses

The one-loop RGE for the gaugino masses are related to those for the gauge

couplings

d

dt
Mi = − 1

8π2
big

2
iMi , (130)

which results in the interesting fact that at one loop,

d

dt

Mi

g2
i

= 0 . (131)

Thus, if at the GUT scale, all the gauginos have the same mass - as is often

assumed in gravity mediation, or the gauginos masses are generated pro-

portional to their gauge coupling squared - as in minimal gauge mediation,

then there is a prediction for the gaugino mass spectrum. The so-called

unified gaugino mass boundary condition results in a ratio of masses at the

weak scale of,

M1 : M2 : M3 ≈ 1 : 2 : 7 . (132)

Resulting in a gluino significantly heavier than the charginos and neutrali-

nos.

7.4. Soft parameters

The SUSY breaking parameters have additive renormalisation. I consider

here, as examples, the left-handed stop mass and the soft masses for the

Higgs doublets,

dm2
q̃3

dt
=

1

16π2

(

Xt +Xb −
32

3
g2
3 |M3|2 − 6g2

2 |M2|2 −
2

15
g2
1 |M1|2

)

dm2
Hu

dt
=

1

16π2

(

3Xt − 6g2
2|M2|2 −

6

5
g2
1 |M1|2

)

(133)

dm2
Hd

dt
=

1

16π2

(

3Xb +Xτ − 6g2
2|M2|2 −

6

5
g2
1 |M1|2

)

.
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I have introducedXt = 2|Yt|2(m2
Hu

+m2
q̃3

+m2
ũc
3

)+2|at|2,Xb = 2|Yb|2(m2
Hd

+

m2
q̃3

+m2
d̃c
3

)+2|ab|2 and Xτ = 2|Yτ |2(m2
Hd

+m2
l̃3

+m2
ẽc
3

)+2|aτ |2. Here, and

above, I have made the standard assumption that the Yukawa matrices

are well approximated by setting all except the (3, 3) entries to zero. The

equivalent RGEs for the first two generations only involve the gauge con-

tributions. Furthermore the complete set of RGEs is substantially longer, I

have just shown a few representative examples and provided references for

the full set.

Although solving the RGEs has to be done numerically we can see a

few interesting properties without resorting to numericsj. The gauge inter-

actions push the soft scalar masses up as the RGEs run into the infrared

(IR). This evolution is largest for the coloured particles and smallest for

the right-handed sleptons. On the other hand, Yukawa interactions tend to

drive scalar masses down in the IR, with the result that the third genera-

tion right-handed fields, t̃c, b̃c, τ̃c, will be lighter than their cousins from

the first two generations, assuming flavour blind boundary conditions in the

UV. The down-type Higgs has the same quantum numbers as the lepton

doublets and so runs in a similar fashion, although at large tanβ the cor-

rections from the bottom Yukawa can have some effect. The up-type Higgs

on the other hand experiences the effect of the large top Yukawa, without

any compensating effect from the gluino, driving it mass down. It is possi-

ble that with unified boundary conditions for the scalar masses that m2
hu

is driven negative, while the other scalar masses remain positive. This is

actually a very positive feature since it helps satisfy the conditions required

for EWSB; Eq. (101) and Eq. (102). In this case the source of the W and Z

mass comes from the renormalisation group evolution from the high scale

and is known as radiative electroweak symmetry breaking.

As an example of the running of SUSY parameters and of radiative

electroweak symmetry breaking I show in Fig. 7 the evolution of parameters

for a standard MSUGRA benchmark point59 called SPS1a. At the GUT

scale the input parameters are,

m0 = 100 GeV, m1/2 = 250 GeV, a0 = 100 GeV, tanβ = 10, µ > 0,

(134)

the remaining Higgs mass parameters are determined by the requirement

of correct electroweak symmetry breaking, Sec. 5. The general features dis-

cussed above can be seen in the plot: the gluino is heavier than the wino

jThere are many packages to solve the RGEs of the MSSM, e.g. Softsusy,55 SuSpect,56

SPheno57 and ISASUSY.58
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is heavier than the bino in the IR even though they are degenerate at the

GUT scale. The squarks are heavier than the sleptons, and the up-type

Higgs soft mass is pulled negative by the large top Yukawa, leading to ra-

diative electroweak symmetry breaking. The full low energy spectrum for

this point is shown in Fig. 8.

Fig. 7. Renormalisation group evolution of parameters for benchmark point SPS1a.55
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Fig. 8. Superpartner particle spectrum for benchmark point SPS1a,59 see text for de-
tails.

7.5. Effects of the hidden sector

So far I have been implicitly assuming that the only light fields below the

messenger scale are the fields of the MSSM, in this case the RGEs of the

MSSM parameters are as described above. However, it is also possible that

the messengers are not the lightest fields in the hidden sector. If the hidden

sector is strongly coupled and contains light fields then it can have an ap-

preciable affect on the running of the MSSM parameters.60–62 In particular

if the hidden sector is close to a conformal fixed point then its fields can

acquire large anomalous dimensions, and the running from the mediation

scale down to the scale at which conformal symmetry is broken can expo-

nentially suppress certain operators involving hidden sector fields. If the

hidden sector is weakly coupled these effects are small and can safely be

ignored.

Given our inability to calculate anomalous dimensions in strongly cou-

pled theories it is no longer possible to extrapolate from a weak scale ob-

servation of an MSSM parameter up to high scales and learn about UV
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physics. However, even in the presence of a strongly coupled hidden sector

there are certain relations amongst MSSM parameters that remain and pro-

vide a limited probe of the mechanism of SUSY breaking. In certain classes

of hidden sectors the running may be such that dangerous flavour changing

operators, such as the off-diagonal scalar masses of Eq. (79) will be driven

to zero even if they are O(1) at the mediation scale63,64 or it may offer a

solution to the µ-b problem.62,65 So, although some predictivity has been

lost with the inclusion of hidden sector running there are some potentially

beneficial effects, and it should be emphasised that the hidden sector may

well be of a type that cannot be ignored in the RGEs.

8. Supersymmetric Dark Matter

As mentioned in Sec. 3 the existence of relevant baryon- and lepton-number

violating operators in the MSSM superpotential necessitates the introduc-

tion of R-parityk. This approach has the happy byproduct of making the

lightest superpartner absolutely stable, and in a large fraction of parame-

ter space the LSP has the correct properties to be the cosmological DM,

which we now discuss. For a review of the evidence of, and other potential

candidates for, DM see Neal Weiner’s lectures notes, Ref. 3, in this volume.

The most studied DM candidate is a neutral weakly interacting massive

particle (WIMP), the states in the MSSM that have the right properties

are the lightest neutralino, the lightest snuetrino, and the gravitino. We will

concentrate for the most part on the lightest neutralino, χ0
1, but whatever

the candidate I will refer to it from now on as χ.

In the fiery early moments of our universe all particles of the MSSM were

in thermodynamic equilibrium, and very abundant. But as the universe

cools, with the temperature T eventually dropping below the LSP’s mass,

the rate of annihilation of χ wins out against that of creation and the

equilibrium abundance of χ becomes suppressed,

nχ = gχ

(

mχT

2π

)3/2

e−mχ/T , (135)

here gχ counts the number of internal degrees of freedom of the LSP. At the

same time the universe is expanding, and at some point the expansion rate

of the universe will exceed the annihilation rate of the DM, resulting in DM

kActually, there are alternative approaches9,10 that allow R-parity to be broken without
dangerous rates of proton decay, leading to an unstable LSP, I will not discuss them
further here.



June 17, 2010 16:50 WSPC - Proceedings Trim Size: 9in x 6in final

48

“freezing out” and the number density (per co-moving volume) becoming

fixed.

Fig. 9. The evolution of the DM (comoving) number density as the universe cools.

To understand this evolution in detail one must solve the Boltzmann

equation in an expanding universe,

dn

dt
+ 3Hn = 〈σvrel〉(n2

eq − n2) (136)

where neq is the equilibrium number density, given by Eq. (135) and

H = ȧ/a is the expansion rate of the universe, a is the scale factor of

the Friedmann-Robertson-Walker metric, see Michael Turner’s lectures in

this volume for more details Ref. 66. During the radiation dominated epoch

when freeze out occurs the entropy density scales as s ∼ T 3 and H ∼ T 2.

The Boltzmann equation is most easily solved in terms of the quantities

Y = n/s and x = mχ/T , the solution is show in Fig. 9.

Freeze out happens when the expansion term is comparable to the an-

nihilation term, and for typical neutralino annihilation cross sections this

occurs at x ∼ 20 − 25, with only logarithmic sensitivity to the DM mass.
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Furthermore this insensitivity of the freeze out temperature means that the

present day DM abundance is determined almost entirely in terms of its

annihilation cross section,

ΩDM ∼ 1

〈σvrel〉
. (137)

The most recent observation of the DM abundance, from WMAP and other

experiments,67,68 gives ΩDM = 0.213. A detailed derivation of Eq. (137) re-

veals that a weak scale cross section, 〈σv〉 ∼ α2/M2
W ∼ 1 pb gives approxi-

mately the observed value for the DM abundance. This is often referred to

as the “WIMP miracle”, a particle with weak scale mass and annihilation

cross section gives the correct relic abundance and the MSSM contains just

such particles.

In the MSSM, and other models of BSM physics, it may not be sufficient

to consider just the evolution of the DM particle in isolation. There are

situations69 that occur in sizeable regions of parameter space that require

more detailed analysis:

Coannihilation If there is another MSSM state with mass within a few

percent of the DM mass then its abundance at freeze out will not be

negligible. For larger mass splittings the Maxwell-Boltzmann suppres-

sion Eq. (135) of its thermal abundance is large. The additional state(s)

can take part in annihilation and in the determination of the relic abun-

dance. Such a situation is referred to as “coannihilation” and can occur

in the MSSM where the DM bino coannihilates with a nearly degenerate

stau.

s-channel pole The annihilation cross section can be greatly altered if

there is a state whose mass is close to twice the DM mass. If there are

the necessary couplings DM may now annihilate through an s-channel

resonance, leading to a greatly enhanced cross section. This can occur

in the MSSM for a neutralino that is an admixture of gaugino and

higgsino annihilating through the A0 pole.

Solving for the DM abundance in the MSSM is a complicated business

due to the complexity of the spectrum and couplings and the number of

diagrams that contribute to the annihilation. Thankfully computer codes

such as DarkSUSY70 and Micromegas71 exist that can numerically solve

Eq. (136) taking into account both coannihilation and s-channel poles.

Notice that freeze out occurs when the neutralino is non-relativistic

which means its annihilation should be dominated by S-wave. In addition,

the neutralino is Majorana, and so its own antiparticle, and consequently
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the annihilation must take place in the antisymmetric spin 0 state. Thus

annihilation to SM fermions is helicity suppressed, meaning that the anni-

hilation cross section to light SM fermions is suppressed by m2
f/m

2
χ. This

rate is too small and the resulting relic abundance is too large! The LSP

must be able to annihilate into top or vector bosons, the later requiring

the LSP not be pure bino but contain an admixture of wino or higgsino,

or must have coannihilations or resonances available to it to increase the

annihilation cross section. In the CMSSM the regions of parameter space

with the correct relic abundance can be identified with each of these casesl.

The properties of DM can also be probed through direct (recoils of

DM off “stuff” in the lab) and indirect (observation of the final states of

“present-day” DM annihilations) searches. There are strong bounds on the

scattering cross section of DM off nulcei72 that for a weak scale particle like a

neutralino mean that the LSP’s coupling to the Z cannot be too large, ruling

out a snuetrino as the DM. The situation of a gravitino LSP suffers from

the converse problem, the coupling is far too small to ever allow detection

of the DM in the lab. For a discussion of some of the phenomenology of a

gravitino LSP see Ref. 73.

The details of DM direct and indirect detection are covered in far more

detail in various reviews, for a review with special emphasis on supersym-

metric DM see, for example, Ref. 74.

9. Onward

From a certain point onward there is no longer any turning back.

That is the point that must be reached.

–Franz Kafka

Although these lecture notes have only scratched the surface of what

is a vast subject it is my hope that they contain enough information (and

motivation!) for you to set off on your own into the supersymmetric world.

There are many textbooks and review articles out there to assist you.

The definitive introduction to most aspects of this subject is the

“Primer” by Stephen Martin.75 For the collider phenomenology of super-

symmetric theories see the TASI lecture notes of Maxim Perelstein76 in this

volume, or from previous years,77 or the text book by Baer and Tata.78

lAlthough obtaining the correct relic abundance is often a constraint placed on scans of

SUSY parameter space, more conservatively one can require that the relic LSP abun-
dance should not be larger than the WMAP measurement. A smaller abundance (larger
annihilation cross section) would then require an additional DM component e.g. an axion.
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There have been many previous TASI lectures on various aspects of SUSY,

see Refs. 15,54,79,80. On the more formal side of things the text book by

Wess and Bagger81 is an excellent resource.
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