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1. Introduction

There is now overwhelming evidence that the majority of the matter in the universe is from
particles not present in the standard model (SM). One of the most appealing candidates for this dark
matter (DM) is a weakly interacting massive particle (WIMP). WIMPs have the virtue that their
interactions with the SM allow them to be made through thermal processes in the early universe.
A weak scale interaction with the SM leads to a relic amount of DM that is consistent with present
day observations. Furthermore, WIMP DM candidates arise in many extensions of the SM whose
motivations are often independent of those of DM. The quintessential example of this is supersym-
metry and the minimal supersymmetric extension of the SM (MSSM). Extending the SM to contain
superpartners of all the SM fields is often motivated by trying to solve the hierarchy problem. The
doubling of the spectrum contains within it a DM candidate with all the necessary features to be a
thermal relic candidate and a WIMP. These notes, which are the amalgamation of lectures given at
TASI 2018 and a Joint ICTP-Trieste/ICTP-SAIFR School, will attempt to introduce the concepts
of WIMPs, supersymmetry, and the phenomenology of WIMP DM within the MSSM.

They start by reviewing the evidence for DM and describing the range of possibilities for what
it can be. In Section 2 we will focus on thermal relics, solve the Boltzmann equation and narrow this
range down to the WIMP candidate. In Section 3 we will take a detour to discuss supersymmetry,
(some of) its motivations, and the superspace and superfield formalism. In Section 4 we put this
formalism to work to describe the MSSM and its phenomenology, with particular focus on the
electroweakino sector that gives the DM candidate. In Section 5 we return to WIMP DM and
the various ways we hope to detect it – directly, indirectly, and at colliders – illustrating these
techniques with examples from the MSSM. Finally, in Section 6 we motivate continued study. The
notes will be sprinkled with simple exercises meant to illustrate or extend the concepts discussed
in the text.

1.1 Evidence and properties of Dark Matter

A census of the entire universe shows that the standard model makes up about 4% of the mat-
ter/energy of the universe, with about 0.4% being locked up in stars and planets and the remaining
3.6% being in inter-galactic gas. Dark energy, the mysterious “stuff” driving the present-day ex-
pansion of the universe makes up around 73% of the budget. The final 23% is dark matter, which
behaves under gravity as SM matter does i.e. it clumps, but it does not couple as strongly as SM
matter under the gauge interactions. All of this information has been gleamed through DM’s grav-
itational interactions at various length scales and at various times. We now briefly discuss some of
these probes of DM.

Motions of Stars and Galaxies In the 1930’s Zwicky measured the motion of galaxies in the
Coma cluster. He applied the virial theorem, the fact that the average kinetic and poten-
tial energy are related by 〈T 〉 = −〈V 〉/2, to the measured speeds to infer the gravitational
potential that the galaxies appeared to move in. As an alternative way to measure this poten-
tial he calculated the mass of the galaxies from their luminosities. When comparing the two
methods he found a large discrepancy and concluded that up to 90% of the cluster must be
matter that does not shine: dark matter.
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In the 1970’s Rubin measured the motion of the outermost stars in spiral galaxies. From
their orbital speeds she determined the force holding them in orbit and thus the amount of
matter interior to their orbit, M(r). For circular orbits the speed is v(r) =

√
GM(r)/r. Based

on the visible material in galaxies one would conclude that for the outermost stars, where
M(r)→ const., the speeds should be decreasing with radius. Instead what was observed was
a flat rotation curve, i.e. v(r)→ const.. Again leading one to conclude there was additional
material, distributed as M(r)∼ r at large r, in spiral galaxies.

More recently, observations have been made of the aftermath of the merging of two or more
galaxy clusters, the most famous being the Bullet Cluster. Images of these systems have been
made in multiple wavelengths. By measuring in X-rays one can determine the location of
the hot gas in the system. The location of the mass is determined by looking at weak lensing
effects. Comparing the position of the galaxies, gas, and mass places bounds on the DM
self interactions with collisionless DM behaving more like the galaxies and DM with large
self interactions behaving as the gas. The bullet cluster requires that the self scattering cross
section obeys σχχ/m <∼ 1cm2/g.

Cosmic Microwave Background The cosmic background radiation1 left over from the big bang
allows us to observe the universe back to when protons and electrons recombined to form
neutral hydrogen at z∼ 1100, approximately 380,000 years after the big bang when the tem-
perature was T ∼ eV. The spectrum of this radiation is a very precise black body with a
temperature that has now redshifted to T = 2.73K. It is very isotropic with temperature fluc-
tuations of δT/T ∼ 10−5, with these originating from quantum fluctuations of the inflaton.
These temperature fluctuations are often decomposed into spherical harmonics,

δT (θ , φ) = ∑
`,m

a`mY`m(θ ,φ) . (1.1)

A useful quantity to study is the power spectrum of the temperature fluctuations C` =
1

2`+1 ∑m |a`m|2. This has been measured across the full sky as well as to very high preci-
sion at small angular scales (high `) over sections of the sky, see Figure 1. The wiggles in the
power spectrum can be well fit by a ΛCDM model with six free parameters, one of which is
the DM density. The origin of the wiggles is the growth of structure after matter-radiation
equality at z ∼ 2700. If the only seeds for structure formation were baryonic overdensities
then the growth could not occur until photon-baryon decoupling. Instead if there is a compo-
nent of matter which is not coupled to photons it can start linear growth after matter-radiation
equality. The wiggles are well fit for a cosmology which contains DM, see Figure 1.

In addition to the CMB power spectrum we can measure related physics through CMB po-
larization as well as Large Scale Structure and Baryon Acoustic Oscillations. All these mea-
surements are in good accord and all point towards the need for a sizable DM component.

Question 1. The Milky Way The Milky Way is approximately made up of a disk of stars, a
central bulge, and a spherical Dark Matter halo. What are the approximate sizes of each of
these components? Consider a galaxy made of a uniform disk of stars of constant density ρ ,

1For a nice set of lectures on aspects of the CMB see [1].
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Figure 1: Left: CMB temperature anisotropies as observed by Planck. Right: the CMB power spectrum
along with the best fit ΛCDM prediction (light blue); taken from [2].

and size R and thickness h. Determine the orbital speed of objects in the plane of the disk,
as a function of r. Compare this to the observations of Vera Rubin, and others, determine
the radial distribution of the Dark Matter, assuming it is spherically distributed and constant
density.

Big Bang Nuclear Synthesis The universe right after the big bang is a hot soup of particles in
thermodynamic equilibrium2. A few seconds after the big bang the soup is made up of
protons, neutrons, electrons, photons, and neutrinos. The ratio of neutron to proton number
density is determined purely by thermodynamics and n/p∼ e−∆m/T , with the mass splitting
∆m ∼ 1.3MeV. Around ∼ 1s after the big bang the universe has cooled to T ∼ 0.8MeV.
The weak interactions (e.g. ν + n 
 p+ e) are no longer faster than the expansion rate of
the universe and the neutrons and protons drop out of chemical equilibrium. The jargon we
use is the weak interactions “freeze out”, with n/p∼ 1/6. At this time the baryon to photon
ratio is tiny, η = nb/nγ ∼ 6×10−10.

As the temperature drops further one would expect the neutrons and protons to combine to
form heavier elements, but the path for this is blocked. In order to go from free neutrons and
protons to heavier elements, such as helium, lithium, etc, one must go through deuterium
via p+n→ D+ γ . However, although the binding of deuterium ∆D = 2.2MeV is below the
energy of the average photon there are so many more photons than baryons that there are a
sufficient number of photons above the binding energy to dissociate deuterium as soon as it
is formed. Thus, there is a “deuterium bottleneck” which means no deuterium can form until
the temperature is low enough that there is less than one photon of energy ∆D per baryon,

η
−1e−∆D/T <∼ 1 . (1.2)

It takes about 100s for the universe to cool sufficiently, to T ∼ 0.1MeV, in which time some
of the neutrons have decayed, changing the neutron to proton ratio to n/p∼ 1/7. Once clear
of the bottle neck heavier elements form. To a very good approximation all neutrons become

2It was a pleasure to discuss this in Boulder given the first detailed analysis was carried out locally [3].
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bound up in the first element beyond hydrogen, helium, with two neutrons per atom. Thus,
we can make a prediction for the primordial mass fraction of 4He, Yp,

Yp ≡
ρ4He

ρb
=

4(n/2)
n+ p

=
2n/p

1+n/p
≈ 1

4
. (1.3)

This simple calculation gives a remarkable accurate answer. To do this more carefully, and
to determine the primordial abundances of 3He, 7Li, and D, requires running complicated
computer codes. However, the bottom line is that the observed primordial abundance of light
elements is well explained3 by SM physics and is consistent with η ∼ 6× 10−10 implying
Ωbh2 ∼ 0.022. Given that the CMB indicates Ωmh2 ∼ 0.14 this means that most of the matter
is non-baryonic. For those wishing for a more detailed analysis of the physics of BBN, see
e.g.[4].

Combining all of the evidence described above, along with others not described, we reach a
consistent picture that 23% of the energy in the universe is due to dark matter and that DM is non-
baryonic, is neutral under the SM, does not interact much with the SM or itself, was non-relativistic
by the time of the CMB, and it is cosmologically long lived. There is no particle in the SM with
these properties so the observation of DM is the discovery of beyond the standard model (BSM)
physics.

1.2 Possibilities for Dark Matter

There are many possibilities for what new physics makes up this DM abundance. DM could
be a single new particle, a multitude of particles, or an entire new sector with DM particles, dark
interactions, and as much interesting dynamics in that sector as occurs in ours. If a single parti-
cle makes up all of DM it could be a fermion (Dirac or Majorana) or a boson (scalar or vector).
The mass range for fermionic DM is mfermionic−DM >∼ 1keV whereas bosonic DM can be as light
as mbosonic−DM >∼ 10−22eV. Fermionic DM cannot be lighter because Fermi degeneracy pressure
would forbid DM being confined into Galaxy sized structures. Below the lower bound for bosonic
dark matter the DM’s de Broglie wavelength would be greater than the size of a dwarf galaxy.
Rather than an entirely new particle DM could instead be a massive compact halo object (MA-
CHO), for example a 30M� black hole [5]. The mass range of all these options is huge, it covers
approximately 99 orders of magnitude!

Within this giant mass range there are many particle physics models, see Figure 2. For in-
stance, hidden sector models, which contain both a DM particle and new dark interactions, populate
the mass range keV−PeV; these will be discussed in more detail in this volume by Tongyan Lin.
SIMPs [6] and Elders [7] exist for masses MeV−GeV. At lighter masses (∼ 10−12 eV−10−2 eV)
an interesting DM candidate is the QCD axion, which will be discussed in greater detail elsewhere
in this volume by Anson Hook [8]. At the top end of the mass range 30 solar mass black holes are
an intriguing possibility given the recent LIGO observations. However, for these lectures we will
focus on the candidate that has historically been the most studied: the Weakly Interacting Massive

3The amount of lithium observed is less than expected and may be an indication of new physics, or poorly under-
stood astrophysics.
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Figure 2: A cartoon of the mass range, and location of some of the candidates, for dark matter.

Particle (WIMP)4. This, typically, is defined to live in the mass range∼GeV−O(10)TeV, we will
see why below.

2. WIMPs

Having discussed the pantheon of DM candidates we now focus for the remainder of these
lectures on the WIMP candidate. We will first spend sometime delving into the details of the
Boltzmann equation, which determines the amount of DM left over once the thermal bath cools
below the DM mass. The thermal relic story, combined with arguments about the size of scattering
cross sections, will determine the WIMP mass range. As one would expect for such a long-studied
DM particle there are many good textbooks and reviews related to dark matter. Two standard
textbooks that discuss cosmology, the observations that support the DM hypothesis, and describe
freeze-out, Boltzmann equations etc are the “The Early Universe” by Kolb and Turner [10] and the
more up to date “Modern Cosmology” by Dodelson [11]. I also find the PDG [12] a good resource.
There are also several extensive online resources, two of note are by Yann Mambrini [13] and Flip
Tanedo [14]. There are previous TASI lectures on this topic e.g. [15, 16] and some reviews e.g.
[17].

2.1 Freeze out

If DM has more than gravitational interactions with SM particles there may be reactions whose
rate is fast enough to bring DM into thermal equilibrium in the early universe e.g. χχ 
 f f̄ . We
wish to understand how much DM is made through interactions with the SM, and how much there
is today as a result. The quantity of interest is the DM phase-space density f (~p, t). Since, we will

4The term WIMP was first introduced in [9].
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assume that the early universe is well described by a Freedman-Robertson-Walker metric5, which
is homogenous and isotropic, f is actually only a function of |~p| and t. The phase-space density
evolution is determined by the Liouville operator

L[ f ] =
∂ f
∂ t
− ȧ

a
p

∂ f
∂ p

, (2.1)

and with interactions f satisfies the Boltzmann equation L[ f ] = C[ f ], where C[ f ] is the so called
“collision term” which encodes all the interactions. In the case where the species described by
f (p1) undergoes a two-to-two interaction, p1 + p2 
 p3 + p4, this collision term is given by

C[ f (p1)] = −
1

E1

∫ 4

∏
i=2

dPi (2π)4
δ
(4)(p1 + p2− p3− p4)

(
f1 f2(1± f3)(1± f4)|M (12→ 34)|2

− f3 f4(1± f1)(1± f2)|M (34→ 12)|2
)

(2.2)

with the shorthand, dPi =
d3 pi

(2π)32Ei
. Here M is the matrix element for the forwards or backwards

process, the ± correspond to Bose enhancement or Fermi blocking, respectively. Before we try
to solve this complicated equation in general let us try to find equilibrium solutions (i.e. L[ f ] =
C[ f ] = 0) in the classical limit where we ignore the Bose/Fermi statistics. It can be shown on
general grounds [19] that any such solution must have the form

feq = eµ(t)−β (t)E . (2.3)

In other words the equilibrium solution looks like a thermal distribution with time dependent chem-
ical potential and temperature (β ∼ 1/T ). Since E2 = p2 +m2, L[ f ] = 0 implies,

µ̇

β̇
= E− ȧ

a
β

β̇

p2

E
. (2.4)

It turns out that for the general case there is no µ and β that solve this equation! Which is to say,
there are no equilibrium solutions to the Boltzmann equation in an expanding universe for arbitrary
mass particles. This can be traced back to the lack of a spatial constant timelike Killing vector
in the FRW metric, or you can just try to solve this equation. However, there are two physically
interesting limits for which there are equilibrium solutions, m→ 0 and m→ ∞. If the particle is
massless there is a solution to (2.4) with µ = 0 and β ∝ a. Thus, massless particles (typically
referred to as radiation) can stay in equilibrium in an expanding universe and their temperature
redshifts as T ∼ 1/a. In the large mass limit the solution has µ = mβ + const. and β ∝ a2. We see
that for non-relativistic massive particles (or matter) the temperature redshifts as T ∼ 1/a2.

So if the universe starts out at temperatures well above a particles mass, and it has sufficiently
strong interactions with the bath, it will be in thermodynamic equilibrium and will maintain a
thermal distribution, cooling as 1/a. At some point, T ∼m, it will no longer follow an equilibrium
distribution, but if it still has strong interactions with the light degrees of freedom it will shortly
thereafter equilibrate and follow a non-relativistic thermal distribution, cooling as 1/a2.

5In particular, ds2 = dt2− a2(t)(dr2 + r2dΩ2) and the Hubble constant is defined as H ≡ ȧ/a. See Jim Cline’s
lectures [18] in this volume for more details on early universe cosmology.
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We usually don’t want to know about the full phase-space distribution of a particle and instead
take moments of it. For instance the number density of a particle is given by

n(t) = g
∫ d3 p

(2π)3 f (p, t) , (2.5)

where g counts the internal degrees of freedom of the particle. Inserting the previously determined
limiting solutions for feq we see that nrad ∼ T 3 and nmatter ∼ (mT )3/2e−m/T . Integrating both sides
of the Boltzmann equation, and doing some integration by parts, leads to its more familiar form

ṅ+3Hn = g1

∫ d3 p1

(2π)3 C[ f (p1)] . (2.6)

Even in this simpler form in general one would expect to have solve a set of coupled integro-
differential equations for each of the species involved in the reactions; an intimidating proposition.
Thankfully, in most cases of interest most particle species are well coupled and are in equilibrium.
In order to simplify the right hand side of (2.6) we make some standard [20] simplifying assump-
tions: the final states 3,4 are SM particles that have additional interactions keeping them in kinetic
and chemical equilibrium and thus f3,4 → f eq

3,4, for each state T � E − µ so that the f follow a
Maxwell-Boltzmann distribution and 1± f ∼ 1, also we will focus on the case of DM being its
own antiparticle i.e. n1 = n2. We are left with

ṅ+3Hn =−
∫ 4

∏
i=1

dPi (2π)4
δ
(4)(p1 + p2− p3− p4)

(
f1 f2|M12,34|2− f eq

3 f eq
4 |M34,12|2

)
. (2.7)

The matrix elements that appear here are just those that appear in a standard calculation of a scat-
tering cross section,∫ 4

∏
i=3

dPi (2π)4
δ
(4)(p1 + p2− p3− p4)|M12,34|2 = 4

√
(p1.p2)2− (m1m2)2σ12,34 , (2.8)

allowing us to relate the right hand side of (2.7) to a cross section,

ṅ+3Hn =−
∫ d3 p1

(2π)3
d3 p2

(2π)3 f1 f2 (σvMoll)12→34 +
∫ d3 p3

(2π)3
d3 p4

(2π)3 f eq
3 f eq

4 (σvMoll)34→12 (2.9)

where the Møller velocity is

(vMoll)i j =

√
(pi.p j)2− (mim j)2

EiE j
=

√∣∣∣∣~pi

Ei
− ~p j

E j

∣∣∣∣2− ∣∣∣∣~pi

Ei
× ~pi

Ei

∣∣∣∣2 . (2.10)

There is little difference between the Møller velocity and the relative velocity when the particles are
non-relativistic [21], but the distinction can be important at larger speeds. Furthermore, the Møller
velocity is necessary to make the result Lorentz invariant. The principle of detailed balance tells us
that when the initial state is in equilibrium with the final state f eq

1 f eq
2 (σv)12,34 = f eq

3 f eq
4 (σv)34,12,

allowing us to express (2.9) entirely in terms of initial state quantities. In addition, we introduce a
thermally average cross section,

〈σv〉=

∫ d3 p1

(2π)3
d3 p2

(2π)3 f eq
1 f eq

2 (σvMoll)∫ d3 p1

(2π)3
d3 p2

(2π)3 f eq
1 f eq

2

. (2.11)
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The utility of this thermally averaged cross section becomes apparent once we realise that even if
number changing processes are slow and species have fallen out of chemical equilibrium, number
conserving (but momentum exchanging) processes can still proceed and keep particles in kinetic
equilibrium. Thus, we expect the momentum dependence of f to be the same as for f eq i.e. f is
separable, f = eµ̃(t)/T f eq(p, t). Finally, we reach the Boltzmann equation in its common form,

ṅ+3Hn = 〈σv〉
(
n2

eq−n2) . (2.12)

Now that we have “derived” the Boltzmann equation it is time to solve it. First notice that the
equation describes a competition between the rate of collisions n〈σv〉 and the rate of expansion
H. If the scattering rate is fast then n follows its equilibrium distribution neq ∼ T 3 for radiation
and neq ∼ (mT )3/2e−m/T for matter. Once the scattering rate drops below the expansion rate the
particle can no longer stay in equilibrium and the evolution is driven by expansion, n ∼ a−3. This
process of the particle falling out of thermal equilibrium is called “freeze out”. At very early times
when T � m and the particle is in equilibrium neq ∼ a−3. The entropy density, s, also redshifts
in this way. This early- and late-time evolution leads us to define a useful quantity, the comoving
number density Y = n

s . Furthermore, it is helpful to define a surrogate for time, x = m/T . We now
specialise to the case of freeze out occurring while the universe is in a radiation dominated epoch
with g? degrees of freedom in the bath, and

H2
RD =

8π3

90
g?T 4

m2
Pl

. (2.13)

From (2.13) we learn that dx/dt = (8π3g?/(90m2
Pl))

1/2m2/x, allowing us to rewrite (2.12) as

dY
dx

=
〈σv〉xs√
8π3g?
90m2

Pl
m2

(
Y 2

eq−Y 2) . (2.14)

Note that s ∼ x−3 and that, although suppressed in the expression, g? is a function of x since the
number of relativistic degrees of freedom in the bath depends upon temperature. Solving this
equation exactly is done numerically, see Figure 3 for a graphical rendition of the solution. But we
can gain some insight by approximately solving it. Once we determine when freeze out occurs, x f ,
and the ratio of n/s at that time i.e. Y (x f ) then since Y is approximately constant from that point
on we can determine the present day abundance of DM.

More precisely, the fraction of the critical density, ρcr, that is made up from DM at the present
time (denoted by the subscript 0) is

Ωh2 =
Y0s0m

ρcr
h2 ≈ Yf s0mh2

ρcr
≈ 0.3

( m
eV

)
Yf (2.15)

where ρcr = 3H2
0 m2

Pl/8π ≈ 8× 10−47h2 GeV4 and s0 ≈ 2970cm−3. The freeze out temperature is
approximately determined by,

n f 〈σv〉 ≈ H f . (2.16)

Solving (approximately) for n f , assuming radiation domination H f ∼ T 2/mPl, and inserting into
(2.15) we find that

Ωh2 ≈ 0.1
( x f

25

)( g?
80

)−1
(

3×10−26cm3s−1

〈σv〉

)
. (2.17)
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Figure 3: Cartoon of solution to Boltzmann equation. To paraphrase Christopher Marlowe, this is “the plot
that launched a thousand papers”.

So, the correct relic abundance is achieved for a weak-scale cross section, 〈σv〉 ∼ α2
W/M2

W ∼ 10−26

cm3 s−1. As we will see, for cold relics with weak-scale annihilation cross sections, x f ∼ 20 for
a broad range of masses. Notice, however, that all that is required is that α2/M2 is weak scale. If
there are new interactions with light mediators and small couplings whose coupling to mass ratio
is similar to the SM’s they too could produce a thermal relic with the right abundance to be DM.

2.2 Hot relic

The first thing to notice about this result is that if DM freezes out when it is relativistic, then
Yf is just the ratio of the number of DM degrees of freedom to the SM degrees of freedom at the
time of freeze out. Since gSM

?
<∼ 100 if DM freezes out while relativistic it overcloses the universe

if m >∼ 1 keV.

2.3 Cold relic

An alternative way to make Yf small, and thus allow heavier DM, is to make it non-relativistic
at the time of freeze out. We can approximately solve (2.14) under these assumptions. Freeze out
occurs when neq〈σv〉 ∼ H f i.e.

x1/2
f e−x f ≈

√
8π3g?

90
1

mχmPl〈σv〉 ≈
1

mχmPl〈σv〉 , (2.18)

which we can solve iteratively,

x f ≈ log
(
mχmPl〈σv〉

)
+ log log

(
mχmPl〈σv〉

)
+ . . . (2.19)

Inserting numbers we see the promised result that for a weak scale cross section x f ∼ 25.

10
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Question 2. Freeze out for the baryons If the baryons were a thermal relic, what would be their
abundance? Estimate the cross section that keeps them in equilibrium and determine the freeze out
temperature, by solving n〈σv〉 ≈ 3H. Compare η = nB/s to the observed value of η ∼ 6×10−10.
Explain.

2.4 WIMP mass range

We have seen that annihilation cross sections near the weak scale, 〈σv〉 ∼ 10−26 cm3 s−1,
can give the observed DM abundance, but for what DM masses? The lower limit on its mass
comes from the Lee-Weinberg bound [22]. If DM annihilates through the weak interactions then
〈σv〉 ∼ G2

Fm2
χ . Inserting this into (2.17) we see that there is too much DM unless m >∼ 2 GeV. For

larger masses the cross section is large enough that DM stays in equilibrium long enough that it is
sufficiently depleted in the early universe. To achieve the correct abundance there must be some
small couplings arising in the DM’s coupling to the weak gauge bosons, for instance if the DM is
an admixture of a state charged under SU(2) and a SM singlet.

The upper limit on the mass is due to so-called unitarity limits, which basically boil down to
the statement that for heavy enough DM mass there is only one scale in the problem, namely mχ .
For point-like DM annihilating in the s-wave the annihilation cross section is bounded by unitarity
[23],

〈σv〉<∼
4π

m2
χ

. (2.20)

Again, inserting this into (2.17) we see there is an upper limit of mχ
<∼ 100 TeV, for heavier masses

the annihilation cross section is too small to deplete enough of the DM.

Question 3. Annihilation cross section expanded in x The thermally averaged annihilation
cross section is ofter written as an expansion in relative velocity, since freeze out typically occurs
when v≈ O(0.1)c. Show this is

〈σvrel〉= a+b〈v2
rel〉+ . . .= a+

6b
x
+ . . . (2.21)

2.5 Summary of WIMPs

Summarising the previous section: a WIMP is a DM candidate which was produced thermally
in the early universe. If it has weak scale or smaller interactions it can have the correct present day
abundance due to its annihilation into SM states freezing out at the correct temperature, Tf ≈m/20.
This remarkably simple story works for DM in the mass range

2GeV <∼ mWIMP <∼ 100TeV . (2.22)

Thus, a weak scale (or smaller) annihilation cross section and a weak-scale mass leads to a thermal
relic DM candidate. Going to larger masses requires DM to be composite state with a geometric
annihilation cross section. Going to smaller masses requires new interactions for DM that allow it
to annihilate with a cross section 〈σv〉 ∼ g4

Dm2
χ/m4

D that is larger than the weak cross section. Such
scenarios will be discussed at TASI by Tongyan Lin.
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The WIMP paradigm has been the focus of the DM field for many years, although this is now
changing. One reason is in many models of BSM physics, motivated by other concerns e.g. the
hierarchy problem, there is often a weak scale particle with the right properties to be WIMP DM.
An obvious question is why should a new 100 GeV particle coupled to the SM be stable? In the
SM the particles that are stable are the lightest particle charged under a symmetry e.g. the proton
is the lightest baryon and the electron is the lightest electromagnetically charged particle. In the
aforementioned new physics models the WIMP candidate is the lightest particle charged under a
new symmetry. The simplest example is a Z2 under which the SM is even and the BSM states
are odd, thus the lightest Parity Odd Particle (LPOP) will be stable. We will now discuss in some
detail one of the quintessential examples of this – supersymmetry – before returning to various
other aspects of WIMP DM, which we will discuss through the lens of supersymmetry.

3. Supersymmetry

The prototypical example of a DM WIMP is the neutralino in the MSSM. I will now spend
sometime discussing supersymmetry and the MSSM before focussing on WIMP DM within the
MSSM. In Section 3.1 I will describe some problems with the SM that motivate much of BSM
physics and briefly explain how SUSY deals with them. In Section 3.3 I will explain the modern
language of SUSY, superfields and superspace, and construct simple supersymmetric Lagrangians.
In Section 4 I will describe the field content and some features of the minimal supersymmetric ver-
sion of the SM, called the MSSM, in the case where supersymmetry is unbroken. In the following
section, Section 4.1, I will discuss the MSSM once SUSY is no longer an exact symmetry of the
Lagrangian, using the language of spurions. I finish by discussing the spectra of the superpartners
in Section 4.3. The long history of SUSY means there are many review articles and textbooks
available from which to learn. There have been many previous TASI lectures on various aspects
of SUSY, see Refs. [24, 25, 26, 27]. The definitive work on most aspects of this subject is the
time-less “Primer” by Stephen Martin [28]. For the collider phenomenology of supersymmetric
theories see previous TASI lecture notes e.g. [29, 30], or the text book by Baer and Tata [31]. On
the more formal side of things the text book by Wess and Bagger [32] is an excellent resource.

There are many reasons to study supersymmetry, ranging from the formal to the practical;
how one weighs each motivation depends on one’s taste. The most pragmatic of them is that SUSY
acts as a sort of Esperanto [33] for BSM physics6. Many phenomena that are present in SUSY
are also present in other models of new physics, and any new physics discovered at the LHC will
undoubtably be attributed to some variant of SUSY. The language of supersymmetry is the de
facto language of most collider searches for BSM physics. It is important for experimentalists and
theorists alike to be well versed in the features of SUSY. Just like the ability to converse in one
foreign language often aides the ability to learn another, the understanding of SUSY will aide the
understanding of much of BSM physics.

The historical discovery of SUSY serves as a valuable lesson in the power of “no-go” the-
orems. The theorem in question is due to Coleman and Mandula [34] and, stated loosely, says
that under a set of physically reasonable assumptions (e.g. a local, relativistic field theory) the Lie-
algebra under which the S-matrix is symmetric is at most the direct product of the Poincare group

6I leave it up to the reader to study the history of Esperanto and to decide how hard to push this analogy.
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and the compact Lie group associated with internal symmetries. The major assumption, whose
weakening allows for supersymmetry, is that Lie algebras are defined by commutation relations. If
we allow for anti-commutation as well as commutation relations (i.e. the generators are no longer
bosonic but may also be fermionic) we have graded Lie algebras and may avoid the Coleman Man-
dula theorem. This more general analysis was carried out by Haag, Lopuszanski and Sohnius[35]
and they identified the most general graded Lie algebra allowed: the super-Poincare algebra.

The fact that supersymmetry is the most general space-time symmetry allowed by nature does
not in principle mean it exists in nature, but it is a compelling reason to study it. SUSY involves
introducing fermionic group generators, Q, and thus the action of the group, Q|ψ〉 = |ψ ′〉, must
change the spin of the state. Thus, in a supersymmetric world a bosonic state has a fermionic
partner and vice versa. As we will see shortly, Q commutes with the Hamiltonian so these partners
are degenerate in mass. Obviously this symmetry is broken in nature. What makes us believe
SUSY is something we may be able to test at weak scale experiments rather than something that
is broken at some high scale like the GUT scale? There are several reasons to think that SUSY
may have something to do with the TeV scale and we will expound on these in more detail in these
lectures.

3.1 The Hierarchy problem

As is well known the SM suffers from the hierarchy problem – the Higgs boson is quadratically
sensitive to high scale physics. Since this is one of the main motivations for SUSY to show up at
the LHC it is worth discussing the issue, and how SUSY alleviates this problem, in some detail
even before we have a complete definition of what SUSY is.

The Higgs boson is the only fundamental scalar in the SM and so behaves differently from
all the other fields under quantum corrections. As a simple toy model consider a theory with a
scalar (the Higgs) coupled to a heavy fermion (the top quark), for now we will ignore all gauge
interactions. In the SM the fermion mass is generated from the scalar vev, here we will just insert
it by hand. The Lagrangian is

L =
∣∣∂µφ

∣∣2 +ψi6∂ψ−m f ψψ− yφψψ−µ
2 |φ |2−λ |φ |4 , (3.1)

where µ2 is positive. Classically there is a fermion of mass m f and a scalar of mass m2
s = µ2.

At loop level the fermion mass term and the scalar mass term receive corrections from diagrams
shown in Figure 4,

∆m f ∼ −
y2

16π2 m f log
(

Λ

m f

)
,

∆µ
2 ∼ λ − y2

16π2 Λ
2 . (3.2)

They differ in one very significant way, the fermion mass corrections are multiplicatively renor-
malised whereas the scalars have an additive renormalisation. Thus, if the tree-level fermion masses
are small they remain so after quantum corrections, whereas the scalar masses are dragged up to
the cutoff scale of the theory. As expected in effective field theory (EFT), all operators allowed by
symmetry are generated at the cutoff scale with O(1) coefficients. Here the symmetry protecting
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O
Figure 4: One loop corrections to fermions and scalars.

the fermion mass is a chiral symmetry, ψ→ eiαγ5ψ . This is broken by the mass term and results in
the loop correction being proportional to m f . There is no such symmetry for the scalar. If the scalar
were related to the fermion through a symmetry then the quadratic divergence would be removed,
since it doesn’t exist for the fermion. In a supersymmetric world where ψ and φ are related by
supersymmetry we would find that λ and y are related, leading to the necessary cancellation.

By supersymmetrizing the SM the quadratic divergence of the Higgs mass can be cutoff, this
provides one motivation for the introduction of SUSY. The Higgs is responsible for electroweak
symmetry breaking, which is associated with the ∼ 100GeV scale, and in a natural theory this is
the mass we would expect for the Higgs. We see from (3.2) that there are large quantum corrections
to any bare mass the Higgs may have. If the SM is an effective theory up to high scales, for instance
the GUT scale ∼ 1016 GeV, then there will be large one-loop corrections to its mass. To maintain
the physical mass to be ∼ 100GeV there will need to be large cancellations between the bare mass
and the quantum corrections. If instead the SM becomes supersymmetric at some scale ΛSUSY ,
i.e. above this scale there are superpartners of the SM fields present in the theory, these quadratic
divergences will be cutoff. Requiring that there is only an O(1) tuning between the bare mass and
the quantum corrections, cutoff at the scale ΛSUSY , we expect the superpartners to enter the theory
around 4π×mH ∼ TeV.

3.2 Gauge coupling unification

The gauge couplings of the SM depend on energy in a way determined by the renormalization
group equations (RGEs). If one assumes that there are no new states above the weak scale, a so
called desert, the three gauge couplings run in such a way that they are nearly all the same value
at a high scale, ∼ 1014 GeV. This remarkable fact, that three a priori independent parameters have
the same value at high scales is suggestive: perhaps SU(3)× SU(2)×U(1) of the SM are really
three pieces of one larger unified group, e.g. SU(5) or SO(10), that is broken at the high scale. This
idea, and the models that realise it, are called GUTs, Grand Unified Theories.

However, the unification is far from perfect in the SM. Although the three lines do get close
to one another at a high scale the unification is not ideal, and the scale of closest approach is low
enough that proton decay, mediated by gauge bosons at the GUT scale which are left over when the
GUT group is broken, should already have been observed. In the MSSM there are additional states
at, and just above, the weak scale that will alter the RGEs and the running of the gauge couplings.
Assuming that they are the only new states, i.e. there is a SUSY desert, one can calculate the gauge
coupling running. Remarkably, the couplings now unify to a far greater degree and at a higher
scale, ∼ 1016 GeV, than before, correcting both of the problems of the SM. Figure 5 shows an
illustration of the the gauge coupling running, at one loop, in both the SM and the MSSM.
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Figure 5: One loop gauge coupling evolution for the SM (dashed lines) and the MSSM (solid lines). The
SU(3) gauge coupling is shown in blue (bottom lines), the SU(2) in green (middle lines) and the U(1), in
GUT normalisation (g1 =

√
5/3g′), in orange (top lines).

3.3 Superfield (and other) formalism

“. . . what he needed was a notion, not a notation.”
– Gauss writing about the mathematician John Wilson

In this section I will attempt to explain all the formalism necessary to understand the remain-
der of the lectures. Although it is not necessary to understand the superfield formalism to learn
supersymmetry, it is the language used by most practitioners and is well worth the effort to learn.
There are many other places one can look to learn the formalism, but you should be aware that they
almost all use different notations and conventions, both from these lectures and each other.

I will use the “West Coast” metric, gµν = ηµν = diag(1,−1,−1,−1). When one first learns
field theory fermions are introduced using Dirac spinors, ΨD. In supersymmetric field theories it is
convenient to instead use Weyl spinors. For a detailed analysis of how they are related see Ref. [36].
Dirac spinors are, in 4 dimensions, 4 component objects while Weyl spinors are 2 component. By
working in the Weyl, or chiral, basis for the γ-matrices the relationships between the two become
transparent:

γ
µ =

(
0 σ µ

σ
µ 0

)
γ5 =

(
−1 0
0 1

)
(3.3)

σ
µ = (1,−→σ ), σ

µ = (1,−−→σ ) (3.4)

with

σ
1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ

3 =

(
1 0
0 −1

)
. (3.5)
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Recall also the combination σ µν = i
4 (σ

µσ
ν −σνσ

µ). The Dirac spinor may be built from a left-
handed and right-handed Weyl spinor. In SUSY, and much of BSM physics, it is useful to work
with only left-handed spinors. Recalling that right-handed spinors are hermitian conjugates of
left-handed fields,

ΨD =

(
χ

η†

)
, (3.6)

where both χ and η are left-handed. Until now I have suppressed indices, and will do so for most
of the rest of the lectures, but occasional it will be necessary to include them. With indices attached
(3.6) becomes,

ΨD =

(
χα

η†α̇

)
. (3.7)

The indices are raised and lowered with εαβ and εαβ with ε12 =−ε21 = ε21 =−ε12 = 1, all others
0. Spinor summations are defined as

χη ≡ χ
α

ηα , χ†η† ≡ χ
†
α̇

η†α̇ . (3.8)

Once these spinor summation conventions are defined we can usually get away with suppressing
the indices.

Question 4. Show χη = ηχ .

3.4 Superspace

With the addition of supersymmetry the usual algebra of the Lorentz group is extended by the
supersymmetry algebra which, for N = 1 supersymmetry in 4 dimensions, is{

Qα ,Q
†
β̇

}
= 2σ

µ

αβ̇
Pµ (3.9){

Qα ,Qβ

}
=
{

Q†
α̇
,Q†

β̇

}
= 0 (3.10)[

Pµ ,Qα

]
=
[
Pµ ,Q

†
α̇

]
= 0 (3.11)

The generators of the SUSY algebra, Qα are spinors and SUSY transformations are of the form
boson↔ fermion. Equation (3.11) indicates that SUSY transformations commute with the Hamil-
tonian and states related by a SUSY transformation have the same mass, such states are called su-
perpartners. From (3.9) we see that two SUSY transformations amount to a spacetime translation
i.e. supersymmetry is a spacetime symmetry. This suggests the concept of superspace, augmenting
the usual four (commuting) coordinates xµ to include 4 anticommuting (Grassmann) coordinates
θα , θ α̇ ≡ (θα)

†. Recall the features of Grassmann spinors:{
θ

α ,θ β

}
=
{

θ α̇ ,θ β̇

}
=
{

θ
α ,θ

β̇

}
= 0 , (3.12)

leading to the result that the square of a Grassmann coordinate is zero, making for simple Taylor
series. For Grassmann variables integration is akin to differentiation and,∫

d2
θ θ

2 ≡
∫

d2
θθ

α
θα = 1

∫
d2

θd2
θ θ

2
θ

2
= 1 (3.13)
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Question 5. Show d2θ =−1
4 dθ αdθ β εαβ and ∂ 2

∂θ α ∂θα
θ 2 = 4.

Just as the momentum operator, −i∂µ , is the generator of space-time translations we would
like to determine the generator, Qα , of SUSY transformations. An obvious guess is Qα = −i ∂

∂θ α

but it is easy to check that this does not satisfy the algebra of (3.9). Instead the generators are,

Qα =
∂

∂θ α
− iσ µ

αβ̇
θ

β̇
∂µ (3.14)

Qα̇ =
∂

∂θ
α̇
− iθ β

σ
µ

βα̇
∂µ (3.15)

Question 6. Show that these Q do indeed satisfy the SUSY algebra.

With the generators in hand we may exponentiate and carry out a finite SUSY transformation
on a function of superspace, which has a remarkably simple form.

Question 7. Confirm that

eεQ+εQ f (xµ ,θ ,θ) = f (xµ + iεσ
µ

θ + iθσ
µ

ε,θ + ε,θ + ε) . (3.16)

The final piece we need to introduce are the superspace derivatives, which anti-commute with
the generators and are given by7

Dα =
∂

∂θ α
+ i
(
σ

µ
θ
)

α
∂µ (3.17)

Dα̇ = − ∂

∂θ
α̇
− i(θσ

µ)
α̇

∂µ (3.18)

(3.19)

So far this may seem like formality for formality’s sake, but its utility will hopefully soon
become very clear. Rather than working with component fields, e.g. fermions and scalars, and
constructing Lagrangians that must be painstakingly checked to ensure SUSY is preserved we can
instead work with superfields and supersymmetry is ensured. It is much like using four vectors in
relativity, if there are no “hanging indices” then Lorentz invariance is maintained without having to
worry about how t,x,y, and z transform under a particular boost. In addition, actions are now built
from integrals over superspace,

∫
d4xd2θd2θ .

Thanks to the properties of Grassmann coordinates (3.12) the most general superfield can be
Taylor expanded in its θ coordinates.

G(x,θ ,θ) = φ(x)+θψ +θ χ +θ
2m+θ

2
n+θσ

µ
θVµ +θ

2
θλ +θ

2
θρ +θ

2
θ

2
d (3.20)

This is a lot of fields, more than we would expect to realise supersymmetry given the toy example
discussed in the introduction. This general representation (3.20) is reducible, and by imposing
constraints we can build smaller irreducible representations. It is these we will use to describe
supersymmetric field theories.

7Notice that I have (deliberately) started to become more sloppy with indices, but there is still enough information
to replace them all, should you feel so inclined.
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Field Off-shell On-shell
φ 2 2
ψ 4 2
F 2 0

Table 1: Number of degrees of freedom of components of the chiral multiplet.

3.5 Chiral superfield

We can build a smaller representation, the chiral superfield, by imposing the constraint

DΦ = 0 . (3.21)

Notice that since {D,Q} = 0 this constraint is invariant under SUSY transformations. To identify
what a chiral superfield is in terms of components first note that

Dα̇

(
xµ + iθσ

µ
θ
)
= 0 and Dα̇θ = 0 . (3.22)

Thus, a chiral superfield is a function of y = xµ + iθσ µθ and θ . Then, expanding as before in
powers of θ ,

Φ(y,θ) = φ(y)+
√

2θψ(y)+θ
2F(y) (3.23)

= φ(x)− iθσ
µ

θ∂µφ − 1
4

θ
2
θ

2
∂

2
φ

+
√

2θψ +
i√
2

θ
2
∂µψσ

µ
θ +θ

2F . (3.24)

So we see that the chiral superfield contains a complex scalar, φ , a Weyl fermion, ψ and another
complex scalar, F , that we will refer to as an auxiliary field (we will see why shortly). It is the
perfect candidate to use for the matter and Higgs fields in a supersymmetric version of the SM.
Note also that any analytic function of chiral superfields (i.e. a function made out of powers of Φ

and no powers of Φ†) is itself a chiral superfield.

Question 8. Using the results of the previous exercise work out the SUSY transformations
on the components of the chiral superfield. That is, calculate δΦ =

(
εQ+ εQ

)
Φ and confirm that,

δφ =
√

2εψ, δψ =
√

2εF +
√

2iσ µ
ε∂µφ , δF = i

√
2εσ

µ
∂µψ . (3.25)

Chiral superfields can be combined in various ways to build superspace, and therefore super-
symmetric, invariants. From (3.21) we see that any holomorphic function of chiral superfields is
itself a chiral superfield. Also, notice that the highest component of the chiral superfield transforms
into a total derivative under a SUSY transformation [see the previous exercise (3.25)]. This is true
for the highest component of any supermultiplet and is as expected on dimensional grounds; since
F is the highest dimension field in the multiplet and the SUSY transformation involves ε whose di-
mension is [ε] =−1/2, making up the units requires a derivative. Since any holomorphic function
of chiral superfields is itself a chiral superfield, then the quantity∫

d4x
∫

d2
θ W (Φ) , (3.26)
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where W is a polynomial in Φ, is a SUSY invariant and a perfect candidate for a term in a SUSY
action. Thus, for chiral superfields an integral over half of superspace is invariant. Alternatively,
θ

2
f (Φ) is invariant when integrated over all of superspace but using (3.13) this reduces to integrat-

ing over only θ 2.
Functions of both Φ and Φ† must be integrated over the whole of superspace in order to be

invariant. Thus, we can now write down the most general supersymmetric invariant action built
from chiral superfields, Φi,

S =
∫

d4x
[∫

d4
θ K(Φ†

i ,Φ j)+
∫

d2
θ W (Φi)+h.c.

]
. (3.27)

K is the Kähler potential and is real and W is the superpotential and is holomorphic in the chiral
superfield(s). The chiral superfield has dimension [Φ] = 1, the same as for its scalar φ , which means
that [θ ] =−1/2. So the K’́ahler potential must have dimension 2 and the superpotential dimension
3, which will limit the renormalizable terms we can write down. Let us examine a simple example
of a supersymmetric theory constructed entirely from chiral superfields. In so doing some of the
formalism’s utility will become apparent.

Wess-Zumino model

The most general supersymmetric, renormalizable model of a single chiral superfield has La-
grangian density ∫

d4
θ Φ

†
Φ+

∫
d2

θ

(
m
2

Φ
2 +

λ

3
Φ

3
)
+h.c. (3.28)

Using the results of the previous subsection we can expand the superfield in its components and
find

L = ∂
µ

φ
∗
∂µφ +ψ

†iσ µ
∂µψ +F∗F

+mFφ − 1
2

mψψ +h.c.+λFφ
2−λφψψ +h.c. (3.29)

The first line comes from the Kähler potential in (3.28) and the second from the superpotential.
This looks like a model of an interacting Weyl fermion and a complex scalar very similar to that
discussed in the introduction, but what about F? There is no ∂F/∂ t term in the Lagrangian. It is
not a propagating field so its equations of motion will be algebraic, hence the name auxiliary field.
This explains the counting shown in Table 1, after application of the equations of motion the only
degrees of freedom are contained in the fermion and boson and they match. But off-shell, where the
equations of motion are not applied, we need to introduce additional bosonic degrees of freedom.
The introduction of the auxiliary fields and of the superspace notation gives a representation of
supersymmetry that closes even off-shell. The difference between the reduction in the number of
off-shell and on-shell degrees of freedom for bosons and fermions is explained by the order of their
equations of motion, and therefore the number of boundary conditions that have to be specified to
solve them.

Since the F-term equations are algebraic in the other fields they can be solved for and re-
inserted into the Lagrangian. For the simple case with canonical Kähler potential, K = Φ†Φ, the
F-term equations of motion are

F∗ =−∂W
∂φ

. (3.30)
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Inserting these equations back into the action results in a contribution to the potential from these
F-terms,

VF = |F |2 = |∂W
∂φ
|2 , (3.31)

notice that this potential is positive semi-definite.
Doing this for the Wess-Zumino model we find

F∗ =−∂W
∂φ

=−(mφ +λφ
2) , (3.32)

and then
L =

∣∣∂µφ
∣∣2 +ψ

†iσ µ
∂µψ− 1

2
mψψ−λφψψ +h.c.−|mφ +λφ

2|2 . (3.33)

This is then a model of a fermion interacting with a scalar. They are degenerate in mass, and if
you were to calculate the loop corrections to the scalar masses you would find there is no quadratic
divergence. This last statement is easy to see from the example in Section 3.1, supersymmetry
relates the Yukawa coupling to the scalar self coupling and the quadratic divergence of (3.2) is
cancelled. The additional scalar3 coupling present in the Wess-Zumino model cannot introduce
quadratic divergences in the scalar mass2 since the coupling is dimensionful. Furthermore, because
the scalar and fermion masses are the same all logarithmic divergences also cancel.

For completeness, the general case, with arbitrary number of chiral superfields Φi, where the
Lagrangian is given by (3.27) leads to a potential

V =
∂W ∗

∂φ ∗i
K−1

i j
∂W
∂φ j

, whereKi j =
∂K

∂φ ∗i ∂φ j
. (3.34)

3.6 Vector superfield

Another constraint that can be placed on the general superfield is that of reality,

V † =V . (3.35)

Doing so will lead us to the vector superfield. The full vector superfield still has many components
but we can take advantage of the fact that all the vectors in the SM are gauge bosons and have
a related gauge symmetry8, Aµ → Aµ + ∂µΛ, to try to gauge some of the components away. We
extend the gauge transformations to act on superfields by noticing that for a chiral superfield Λ the
combination Λ+Λ† is real so V +(Λ+Λ†) is still a vector superfield. In addition, both expansions
contain terms that behave in the correct way to be the symmetry transformation on the gauge field,

V = . . .+θσ
µ

θAµ + . . . , and Λ+Λ
† = . . .+ iθσ

µ
θ∂µ(φ −φ

†)+ . . . (3.36)

Using this gauge transformation we can write the vector superfield in the Wess-Zumino gauge
where many of the components have been gauged away, leaving just a vector, a fermion and a real
scalar (another auxiliary field),

V WZgauge
= 2θσ

µ
θAµ +2θ

2
θλ

† +2θθ
2
λ +θ

2
θ

2
D . (3.37)

8For now we restrict ourselves to Abelian groups.

20



WIMPs and Supersymmetry Patrick J. Fox

Thus the vector multiplet contains the gauge fields and their superpartners, the gauginos. In order
to write down the kinetic terms for the gauge fields and its superpartner we introduce the (gauge
covariant) chiral superfield, Wα , built from the vector superfield,

Wα =−1
8

D2DαV, andW α̇ =−1
8

D2DαV (3.38)

Expanding in terms of component fields leads to,

Wα = λα +θαD− (σ µν
θ)αFµν + iθ 2

σ
µ

∂µλ
† , (3.39)

and explains the often used name of supersymmetric field strength. The field strength has scaling
dimension [Wα ] = 3/2 and the only renormalizable operator we can build from it is a superpotential
term,

1
8π

Im
[(

4πi
g2 +

θY M

2π

)∫
d2

θW αWα

]
= − 1

4g2 FµνFµν +
i

g2 λ
†
σ

µDµλ +
1

2g2 D2− θY M

32π2 Fµν F̃µν . (3.40)

Question 9. By applying the SUSY generators (3.15) to (3.37) show that restricting to the
Wess-Zumino gauge breaks supersymmetry.

It is common to treat the combination of gauge coupling and θ -angle as one quantity, a com-
plex gauge coupling, τ = 4πi

g2 + θY M
2π

, and for most discussions it is sufficient to assume θY M = 0. In
this case the Lagrangian term is,

1
4g2

∫
d2

θ W αWα +h.c.=− 1
4g2 FµνFµν +

i
g2 λ

†
σ

µDµλ +
1

2g2 D2 . (3.41)

As expected the auxiliary field, D, has no kinetic term and again its equation of motion will be
algebraic.

If the chiral superfields of the previous section are charged under the gauge group then they
transform as,

Φ→ e−qΛ
Φ , (3.42)

which means that the Kähler potential of (3.27) is no longer gauge invariant. Including the gauge
interactions the most general Lagrangian involving vector and chiral superfields of charge qi be-
comes,

L =
∫

d4
θK
(

Φ
†
i ,e

qiV Φi

)
+
∫

d2
θ τ WαW α +h.c+

∫
d2

θW (Φi)+h.c. (3.43)

We will limit ourselves to the canonical (renormalizable) Kähler term, K = Φ†eqV Φ for which,∫
d4

θ Φ
†
i eqiV Φi = Dµ

φ
∗
i Dµφi +ψ

†
i iσ µ

∂µψi +F∗i Fi

+
√

2∑
i

qi

(
φ
∗
i ψiλ +λ

†
ψ

†
i φi

)
+∑

i
qiDφ

∗
i φi (3.44)

Combining this with (3.40) we can solve for the D-term and find,

D =−g2
∑

i
qiφ
∗
i φi . (3.45)
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Field Off-shell On-shell
Aµ 3 2
λ 4 2
D 1 0

Table 2: Number of degrees of freedom of components of the vector multiplet.

As before we can remove the auxiliary field from the Lagrangian and we find that it contributes to
the potential,

VD =
1
2

g2

(
∑

i
qiφ
∗
i φi

)2

. (3.46)

So far we have limited ourselves to Abelian groups. For non-Abelian groups chiral multiplets
whose representation have generators T a, transform as,

Φ→ e−T aΛa
Φ, Φ

†→Φ
†e−T aΛa†

(3.47)

in particular fundamental and anti-fundamental representations have a relative minus sign in the
way they transform. The vector superfield now has a more complicated transformation,

eT aV a → eT aΛa†
eT aV a

eT aΛa
(3.48)

and the supersymmetric field strength is now,

W a
α T a =−1

4
D2e−T aΛa

DαeT aV a
. (3.49)

For the particular case of an Abelian group there is one more supersymmetric and gauge in-
variant term we can add to the Lagrangian, the Fayet-Iliopolis term,

ξ

∫
d4

θV = ξ D , (3.50)

which acts as a source for the D-term.
In a general theory involving chiral and vector superfields the scalar potential is given by the

sum of F-term and D-term contributions,

V =VF +VD , (3.51)

and it is positive semi-definite, V ≥ 0. In fact, if and only if the F-term and D-term equations can be
solved9 (i.e. Fi = 0 and Da = 0) is supersymmetry unbroken. To see this recall the SUSY algebra
(3.9) and take the expectation value of the trace of (3.9) in the vacuum,

〈0|4P0|0〉 = 〈0|{Qα ,Q
†
α̇
}|0〉= 〈0|(Q1Q†

1 +Q†
1Q1 +Q2Q†

2 +Q†
2Q2)|0〉

=
∣∣∣Q†

1|0〉
∣∣∣2 + |Q1|0〉|2 +

∣∣∣Q†
2|0〉
∣∣∣2 + |Q2|0〉|2

≥ 0 (3.52)

9In non-Abelian theories the existence of a supersymmetric vacuum is determined entirely by the F-term equations.
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If the vacuum |0〉 is invariant under a supersymmetric transformation then Q|0〉 = 0 and SUSY is
unbroken and the vacuum energy 〈0|H|0〉 = 0 and thus F = 0 and D = 0. Otherwise if SUSY is
spontaneously broken (Q does not annihilate the vacuum) the vacuum energy is positive, since the
right side of (3.52) is positive semi-definite, and one of the F or D-terms is non-zero.

3.7 R-symmetry

With the introduction of superspace coordinates it is possible to define a new symmetry of the
action. Under this R-symmetry the θ coordinate picks up a phase,

θ → eiα
θ , and θ → e−iα

θ (3.53)

From our definition of integration of Grassmann coordinates (3.13) we see dθ rotates the opposite
way to θ . This means that if the Kähler potential has R-charge 0 and the superpotential has R-
charge 2 the action will be R-symmetric. One immediate consequence of this is that Wα and
therefore gauginos have R-charge 1. Under an R-symmetry transformation θ rotates by a phase,
so different components of a superfield must have different R-charges. As an example consider the
superpotential W = mΦ2 which is R-symmetric if Φ has R-charge 1, its components then transform
as,

φ(x)→ eiα
φ(x), ψ(x)→ ψ(x), F → e−iαF . (3.54)

3.8 Putting the formalism to work: O’Raifeartaigh and other models

So far we have concentrated on writing down supersymmetric actions without worry about
whether the ground state is supersymmetric. Now we will consider the simplest class of models
that spontaneously break SUSY, and in so doing learn a few general rules about models that break
SUSY at tree level and how one goes about analyzing models of SUSY breaking.

The simplest models10 that break supersymmetry are O’Raifeartaigh models [38] and are built
from chiral superfields. Consider as an example the model with 3 chiral superfields, A,B,X and
superpotential,

W = λX(A2−µ
2)+mAB+h.c. , (3.55)

we will assume throughout that the parameters are all real. The F-term equations are,

F∗X = −∂W
∂X

= λ (A2−µ
2) = 0 (3.56)

F∗A = −∂W
∂A

= mB+2λAX = 0 (3.57)

F∗B = −∂W
∂B

= mA = 0 , (3.58)

which cannot be simultaneously solved and thus SUSY is broken. It is instructive to examine the
spectrum in this model, to do so we will need the fermion, MF , and scalar, M2

S , mass matrices. At
tree-level these are simply given by,

MF |i j =
∂ 2W

∂Φi∂Φ j
and M2

S |i j =
∂ 2V

∂φi∂φ j
(3.59)

10The Poloyni model [37] has just a linear superpotential, W = µ2Z, and is simpler, but rather boring to analyze.
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For the O’Raifeartaigh model of interest the potential is given by,

V = |FX |2 + |FA|2 + |FB|2 = |λ (A2−µ
2)|2 + |mB+2λAX |2 + |mA|2 , (3.60)

which has a flat direction since (3.57) can always be solved regardless of the values of the other
fields. This vacuum degeneracy will be lifted by loop corrections. If m2−2λ 2µ2 > 0 the minimum
is at the origin, otherwise A acquires a vev. The two minima are

A = 0,B = 0 (3.61)

A2 =
2λ 2µ2−m2

2λ 2 ,B =
2λ

m

√
2λ 2µ2−m2

2λ 2 X . (3.62)

At the first, V = λ 2µ4 and at the second V = m2(µ2− m2

4λ 2 ). Concentrating on the case with the
vacuum at the origin the fermion mass matrix in the (ψX ,ψA,ψB) basis is given by,

MF =
∂ 2W

∂Φi∂Φ j
=

0 0 0
0 2λx m
0 m 0

 , (3.63)

where x = 〈X〉. The three fermions have mass 0, and λx±
√

m2 +λ 2λx2. The massless fermion
is the Goldstino, the analogue of the Goldstone boson of spontaneously broken global symmetries.
Here it is fermionic since the spontaneoulsy broken symmetry is SUSY and its generators are
fermionic not bosonic.

The scalar mass matrix is more complicated. In principle it is a 6×6 matrix but since X and
X∗ don’t acquire masses we concentrate on the 4×4 submatrix. In the (A,B,A∗,B∗) basis it is,

M2
S =

∂ 2V
∂φi∂φ j

=


m2 +4λ 2x2 2λmx −λ 2µ2 0

2λmx m2 0 0
−λ 2µ2 0 m2 +4λ 2x2 2λmx

0 0 2λmx m2

 (3.64)

The scalar masses (really m2’s) are 0,0, and m2 + λ

2 (4λx2±λ µ2±
√

16m2x2 +λ 2(µ2−4x2)). We
can immediately see another feature of spontaneous SUSY breaking in a renormalizable theory,
there is a sum rule:

Str M2 = ∑(−1)2J(2J+1)M2
J = ∑

scalars
M2

s −2 ∑
f ermions

M2
F = 0 (3.65)

This is true in all theories where SUSY is broken at the renormalizable level and immediately indi-
cates a problem for coupling the MSSM to SUSY breaking directly - there would be superpartner
lighter than its SM partner!

To see that this is true in general and not just a quirk of O’Raifeartaigh models recall that the
scalar mass matrix is of the form,

M2
S :

1
2
(Φ∗i Φi)

 ∂ 2V
∂φ∗i ∂φ j

∂ 2V
∂φ∗i ∂φ∗j

∂ 2V
∂φi∂φ j

∂ 2V
∂φi∂φ∗j

(Φ j

Φ∗j

)
(3.66)
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while the fermion mass matrix is,

MF :
1
2

ψi
∂W

∂φi∂φ j
ψ j (3.67)

Since V = ∂W
∂φi

∂W ∗
∂φ∗i

we immediately see that TrM2
S = 2TrM2

F .

Question 10. Fayet-Iliopoulos terms. For a U(1) gauge group there is one more gauge
invariant operator that can be added to the Lagrangian, a Fayet-Iliopoulos term,

∫
d4θκV . Consider

SUSY QED with an FI term and a vector like pair of “electrons”, i.e.(
Φ

†
1eeV

Φ1 +Φ
†
2e−eV

Φ2−κ
2V
)∣∣∣

θ 4
+

(
1
4

WαW α +mΦ1Φ2 +h.c.
)∣∣∣∣

θ 2
(3.68)

Show that for the case m2 > eκ2 SUSY is broken but the gauge symmetry is not but for m2 < eκ2

both SUSY and the U(1) are broken. Show that in both cases the supertrace is 0, as expected.

4. The MSSM

Now we are in a position to discuss the supersymmetric version of the SM. There are many
ways in which one can imagine embedding the SM within supersymmetry, the one which requires
the introduction of the smallest number of superpartners is called the Minimal Supersymmetric
Standard Model (MSSM). Before writing down its Lagrangian it is useful to first remind ourselves
of the field content of the SM, written in terms of only LH fermions. The SM is based on the gauge
structure SU(3)× SU(2)×U(1) and under these groups it has 3 generations of matter fields that
are in the following representations:

qi = (uL,dL) :
(

3,2,
1
6

)
uc

i :
(

3,1,−2
3

)
dc

i :
(

3,1,
1
3

)
`= (ν ,eL) :

(
1,2,−1

2

)
ec

i : (1,1,1) (4.1)

Gauge fields that are in the adjoint representation of the groups:

g : (8,1,0)

Aa
µ : (1,3,0)

Bµ : (1,1,0) (4.2)

The last two mix after electroweak symmetry breaking. Finally there is the Higgs boson:

h :
(

1,2,
1
2

)
(4.3)
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SM Field SU(3),SU(2),U(1) MSSM partner Superfield

qi (LH quarks) (3,2, 1
6) q̃i (LH squarks) Qi

uc
i (RH top, charm, up) (3̄,1,−2

3) ũc
i (RH stop, scharm, sup) Uc

i
dc

i (RH bottom, strange, down) (3̄,1, 1
3) d̃c

i (RH sbottom, sstrange, sdown) Dc
i

`i (LH leptons) (1,2,−1
2)

˜̀i (LH sleptons) Li

ec
i (RH tau, muon, electron) (1,1,1) ẽc

i (RH stau, smuon, selectron) Ec
i

hu (hd) (Higgs) (1,2, 1
2 ); (1,2,−1

2) h̃u
(
h̃d
)

(higgsino) Hu (Hd)

Table 3: Field content and naming conventions of the MSSM.

The simplest way to supersymmetrise is to place all the SM fields into superfields and introduce the
necessary superpartners to fill out the superfields. For the fermions this requires introducing scalars
(dubbed sfermions) and placing them in a chiral multiplets. We will denote the chiral superfield by
the upper case version of the SM field, e.g. qi → Qi. Superpartners of SM fields will be denoted
with a tilde and the scalars have been given names by (unfortunately) adding an “s” to the front of
the SM particles name, e.g. the superpartner of the electron (the selectron) is ẽ.

The gauge bosons will require the introduction of femionic partners (dubbed gauginos) and
will be placed in vector superfields. We will denote them as Vi where i = 3,2,1 denotes the size of
the group. The fermionic partners take their name from the SM field and adding an “ino” on the
end, e.g. the gluino, g̃, is the fermionic partner of the gluon, g.

So far in filling out the chiral superfields we have been introducing new bosonic partners. In
the case of the Higgs however we are introducing a new chiral fermion and this leads to a problem.
Chiral fermions contribute to anomalies and the introduction of one fermion charged under SU(2)×
U(1) will make the gauge symmetries anomalous. Also, the restriction in supersymmetry that the
superpotential has to be a holomorphic function of the chiral superfields would forbid some of
the necessary Yukawa couplings. Both of these facts can be avoided if we introduce not only a
fermionic partner of the SM Higgs (by the naming convention called a Higgsino) but a second
chiral superfield. Thus there are now two Higgs chiral superfields,

Hu = (H+
u ,H0

u ) :
(

1,2,
1
2

)
Hd = (H0

d ,H
−
d ) :

(
1,2,−1

2

)
(4.4)

The total field content and the bizarre naming convention is collected in Table 3.
With the field content in hand we may now procede to follow the mantra of effective field

theory and write down all operators allowed by symmetry. Keeping only renormalizable operators
we have Kähler terms of the form,

K = Q†eV3Q+Uc†e−V3Uc +Dc†e−V3Dc + . . . (4.5)

gauge kinetic terms of the form, ∫
d2

θ
1

4g2
3
W (3)

α W (3)α + . . . . (4.6)
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Figure 6: Top Yukawa couplings.

Finally, the superpotential which we discuss in two parts. First,

WMSSM = YUUcQHu−YDDcQHd−YEEcLHd +µHuHd . (4.7)

I have suppressed flavour and gauge indices for clarity. We can see again the need for the intro-
duction of a second Higgs doublet, without it some of the SM fermions would be massless. As in
the SM the fields may be rotated such that the Yukawas are diagonal, and since the third genera-
tion of SM fermions is appreciably heavier than first two the Yukawas are often approximated as
YU ≈ diag(0,0,yt), YD ≈ diag(0,0,yb) and YE ≈ diag(0,0,yτ). The µ-term is a mass term for the
Higgsinos and will also, through F-terms, contribute to the scalar potential.

Expanding the superfields in WMSSM in their component fields gives us the Feynman rules for
the SM particles and their superpartners. Concentrating on the top Yukawa term we can write down
three different couplings all of size yt and we learn a very useful rule of thumb for understanding
couplings in the MSSM, see Figure 6. Take any vertex in the SM and replace two of the particles
with their superpartners and this is a vertex in the MSSM. This does not capture all the available
couplings, for instance the F-term for Uc leads to a four-point Higgs-squark coupling that has no
SM counterpart, but does work for couplings involving at least one SM fermion coming from the
superpotential and the gauge coupling terms.

Question 11. Put the flavour and gauge indices back into (4.7), paying close attention to
SU(2) indices which are contracted with εαβ , and confirm the signs.

In addition to these SM-like terms there are some other renormalisable operators allowed by
the gauge symmetries that can be added to the superpotential,

W∆B,L = κ
i jk
1 QiL jDc

k +κ
i jk
2 LiL jEc

k +κ
i
3LiHu +κ

i jk
4 Dc

i Dc
jU

c
k . (4.8)

However, the first 3 of these operators violate lepton number, and the last is no better since it vio-
lates baryon number. Note that both κ2 and κ4 are antisymmetric under i↔ j because of the anti-
symmetry of the gauge indices, one is contracted with εαβ and one with f abc. At the renormalizable
level in the SM baryon and lepton symmetries are accidental, operators that would violate B or L
are forbidden because of gauge symmetries; B and L are separately violated by non-perturbative
processes, only B− L is conserved. In the MSSM this accident no longer happens because su-
perpartners allow us to construct the operators in (4.8). We could forbid these operators by fiat,
as we will see the superpotential has an interesting non-renormalisation property so that even if
there is no symmetry forbidding these operators once their coefficients are set to zero they won’t
be generated in perturbation theory, but this is not appealing.
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These operators could be forbidden if we introduced a new symmetry, the price we have to
pay for wanting to solve the hierarchy problem. For instance we could introduce an R-symmetry
as in Section 3.7 where R[Q,Uc,Dc,L,Ec] = 1/2 and R[Hu,Hd ] = 1. This would forbid the W∆B,L

terms while allowing the WMSSM terms. However, as we will soon see, this is too restrictive and
would forbid mass terms for gauginos. Instead we consider a discrete Z2 subgroup of the U(1)
R-symmetry under which superpartners flip sign and SM fields do not. Under this R-parity11 the
fields have charge,

PR = (−1)3(B−L)+F (4.9)

Under the parity SM fields are even and superpartners are odd and it has several interesting impli-
cations:

1. Superpartners and SM particles cannot mix

2. The lightest parity odd particle (LPOP) is a superpartner and the lightest supersymmetric
particle (LSP) is stable. It turns out that the LSP is often a neutral state and has exactly the
right properties to be the DM!

3. Superpartners must be made in pairs, and when they decay they eventually decay down to an
odd number of LSPs. If this decay is prompt (and the LSP is neutral) they leave a missing
energy signature in detectors.

This idea of parity oddness for new particles is so successful that it has been borrowed many
times for other BSM scenarios e.g. KK-parity leading to LKPs of extra dimensions[39], T-parity
and LTPs of Little Higgs scenarios[40]. In the rest of these lectures we will assume that R-parity
is an exact symmetry of the MSSM but it is also possible that it is broken, that there is another
symmetry that protects protons from decay or that the κ are tuned to be small [41, 42]. If this
were the case then SUSY would lose its dark matter candidate and depending on the timescale for
decay its missing energy signature in colliders. To see how small the couplings to the light quarks
would have to be consider the case of κ1 and κ4 non-zero, then there would be a tree-level diagram,
involving squark exchange, that would lead to proton decay. Although an exact calculation is
complicated, we need to know the details of the quark make-up of the proton, we can estimate the
proton lifetime,

τ
−1 = Γ∼ |κ1κ4|2

16π

m5
p

m4
q̃
⇒ τ ≈ |κ1κ4|−2

( mq̃

1 TeV

)4
×10−11s . (4.10)

The proton lifetime is at least ∼ 1032 years implying that the relevant κ have to be very small,
|κ| <∼ 10−12.

Now that we have forbidden the bad renormalisable operators12 we have a fully supersymmet-
ric version of the SM. A parameter count shows that the number of parameters is one smaller than
that in the SM since the Higgs potential is entirely determined by the D-terms. However, this is
not a fully realistic model since we know that the superpartners are not degenerate with their SM

11Equivalently another possibility is matter parity where parity is assigned by PM = (−1)3(B−L).
12There are higher dimension operators, such as QQQL, that can contribute in loops to proton decay. Depending on

the scale that suppresses these operators they too can be a concern in supersymmetric theories [43].
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cousins. To break this degeneracy requires us to break SUSY and will introduce a multitude (105!)
of new parameters [44]. SUSY is great, breaking it is where the trouble begins.

4.1 SUSY breaking in the MSSM

The supertrace condition (3.65) on tree-level SUSY breaking predicts superpartners lighter
than the heaviest SM particle in each charge sector of the SM, i.e. sleptons are lighter than the tau,
squarks are lighter than the top etc. This is clearly ruled out, which leads to the typical scenario
for introducing SUSY breaking into the MSSM. We introduce some hidden sector whose dynamics
is such that the vacuum of this sector is not supersymmetric [45] but is sufficiently heavy that the
supertrace condition is not a concern. There are then some “messenger” fields which couple the
MSSM to the dynamical SUSY breaking sector. The SUSY breaking in this dynamical SUSY
breaking sector is then mediated to the MSSM through the messengers. For instance in gauge
mediation [46] the messengers have SM gauge quantum numbers, whereas in gravity mediation
the messenger fields are unspecified fields whose mass is at the Planck scale. Integrating out the
messenger fields results in couplings between the SUSY breaking and the MSSM, the size of these
couplings depends on the details of the mediation mechanism - a subject worthy of a series of TASI
lectures itself [26]. However, the list of SUSY breaking operators is finite and one can parametrise
all possibly combinations by considering just these operators, which we do below.

4.2 Spurions

For the purpose of these lectures, and much of SUSY phenomenology, it is sufficient to carry
out a “spurion” analysis. Spurion analyses are a useful tool when one wishes to keep track of how
a symmetry is broken, any parameter that breaks a symmetry can be elevated to the status of a
field and the symmetry restored by assigning the appropriate transformation properties to the field.
The field is not dynamical, its sole purpose is to get a vacuum expectation value which breaks
the symmetry, restoring the parameter to the Lagrangian, but in so doing it helps us keep track of
allowable operators. We have seen this before in the SM, at energies below the W mass we write
down the QCD Lagrangian including mass terms for the quarks. But in reality, once we learn about
SU(2)W , we realise that these quark masses break SU(2)W which can be restored if the mass is
thought of as transforming under the SU(2)W symmetry. In this case the spurion is nothing more
than the SM Higgs. In SUSY there need not be a physical particle associated with the spurion, or
it may be too heavy to ever be accessible, but the restoration of SUSY will still be a useful tool.

In SUSY the available spurions whose VEV break the symmetry without also breaking Lorentz
invariance are the F-term of a chiral superfield, X = θ 2F , or the D-term of a U(1) vector superfield,
W ′α = θαD. With these in hand we can ask what are the leading operators involving these spurions
that will lead to SUSY breaking terms in the Lagrangian. In the MSSM the only relevant spurion
is X and the important operators, generated at the messenger scale (M), are:

Scalar mass

ci j
∫

d4
θ

X†X
M2 Q†

i Q j , (4.11)

which leads to a scalar mass2 term in the Lagrangian of

−
(
m2)i j

q̃∗i q̃ j , (4.12)

29



WIMPs and Supersymmetry Patrick J. Fox

with
(
m2
)i j

=−ci j(FX/M)2. This operator exists whether X is a MSSM singlet or not. The
ci j can have new flavour structure and if the sfermions are not well above the weak scale
this can potentially lead to visible flavour violating effects. Certain mediation mechanisms,
for instance gauge mediation, predict that ci j ∝ δ i j which avoids this problem. In gravity
mediation there is no such prediction but nonetheless it is often assumed that the scalar
masses generated at the Planck scale are flavour diagonal, primarily to avoid these strong
constraints.

Gaugino mass
1
2

ci

∫
d2

θ
X
M

W αWα , (4.13)

which leads to a Majorana gaugino mass term in the Lagrangian of

−1
2

miλ̃
α

λ̃α (4.14)

where i here runs over the three gauge groups of the MSSM, and mi =−ciF/M. This opera-
tor can only be written down if X is a MSSM singlet. If this is not the case one would expect
the scalar masses (4.11) to be far larger than the gaugino masses (4.13).

A term ∫
d2

θ
X
M

(
Ai j

u Uc
i Q jHu−Ai j

d Dc
i Q jHd−Ai j

e Ec
i L jHd

)
, (4.15)

which leads to scalar trilinear terms in the Lagrangian of

ai j
u ũc

i q̃ jhu−ai j
d d̃c

i q̃ jhd−ai j
e ẽc

i
˜̀jhd (4.16)

with ai j = Ai jF/M. As for the gaugino masses this operator requires that the spurion is a
MSSM singlet. Furthermore, the A-terms are another new source of flavour violation and so
have strong constraints on the sizes of the flavour off-diagonal terms.

b term

B
∫

d4
θ

X†X
M2 HuHd , (4.17)

which leads to a scalar mass2 term in the Lagrangian of

−bhuhd , (4.18)

with b = −B(F/M)2. If X is a singlet then a µ term, a supersymmetric parameter, can also
be generated from X†HuHd/M in the Kähler potential. For successful electroweak symmetry
breaking the supersymmetric mass parameter, µ , must be around the weak scale and the
SUSY preserving and breaking parameters related by b ∼ µ2. If both these two operators
are generated with comparable coefficients, as can occur, for example, in gravity mediated
theories [47], then this provides a solution to the µ-b problem.

These are the leading operators discussed in the context of the MSSM. There are higher di-
mension operators that are typically generated with small coefficients at the messenger scale. In
the absence of MSSM gauge singlets these additional operators have also been shown [48] to be
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“soft”13. They correspond to non-holomorphic combinations of MSSM fields, e.g. X†QH†
u Dc/M2

and X†XQH†
u Dc/M3. Although they are typically small at the messenger scale these operators

may be generated through renormalisation group running and can lead to interesting “wrong-type”
Higgs couplings.

If the field content of the MSSM is extended then there are more operators that can be writ-
ten down. One interesting possibility, that uses a D-term spurion, is that of supersoft SUSY
breaking[49]. The MSSM is extended by adding chiral superfields, Ai, that transform in the ad-
joint representation of U(1), SU(2) and SU(3), for i = 1,2,3, respectively. This now allows us to
write down Dirac gaugino mass terms:

Supersoft term
√

2
∫

d2
θ

W ′α

M
W i

αAi , (4.19)

which results in a gaugino-adjoint Dirac mass, a mass term for (the real part of) the scalar
adjoint, and a scalar tri-linear term,

−mDλ̃iãi−m2
D(ai +a∗i )

2−
√

2mD(ai +a∗i )

(
∑

j
gkq∗jtaq j

)
, (4.20)

where mD = D′/M and q represents all MSSM fields charged under gauge group i. Models
with just a D-term spurion have interesting renormalization properties [50, 51, 52, 53, 54,
49, 55].

4.3 Superpartner mass spectra

We now turn to the masses of the superpartners. We will focus on those fields most con-
nected to DM, but will include a brief discussion of non-DM candidates for completeness. The
requirement that DM be electrically neutral leads to three different DM candidates within SUSY:
sneutrinos (ν̃); an admixture of the higgsinos, wino, and bino (a so-called neutralino); and the
gravitino.

Sneutrinos are the scalar superpartner of the SM neutrinos. Since they carry electroweak charge
they have a coupling to the Z boson and a large scattering rate off nuclei. They are ruled out
by direct detection searches. However, if the mass eigenstates are split in some way, perhaps
through mixing with a singlet or a lepton-number violating mass term, so the Z-coupling is
off diagonal, then they can be an inelastic DM candidate [56].

Neutralinos are the mass eigenstates made from the higgsinos, winos and bino, they are Majorana
fermions. They are the most common DM candidate in SUSY and their properties depend on
how these states mix to form the mass eigenstates. After electroweak symmetry breaking the
neutral components of the Higgsinos, h̃u and h̃d , will mix with the bino, B̃, the partner of the
U(1)Y gauge boson and the wino, W̃ 0, the partner of the neutral component of the SU(2)W
gauge boson. The mass eigenstates are called neutralinos and are variously denoted as Ñi,

13They don’t generate quadratic divergences, only logarithmic ones.
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χ̃0
i , Z̃i, but in all cases i labels the mass eigenstates from lightest, i = 1 to heaviest i = 4.

Extensions of the MSSM will naturally have more neutralinos.

We define ΨT
0 = (B̃,W̃ , h̃d , h̃u) which has a (Majorana) mass term in the Lagrangian of

−1
2 ΨT

0 MNΨ0 + c.c. with

MN =


m1 0 −cβ sW MZ sβ sW MZ

0 m2 cβ cW MZ −sβ cW MZ

−cβ sW MZ cβ cW MZ 0 −µ

sβ sW MZ −sβ cW MZ −µ 0

 . (4.21)

The real eigenvalues of this complex symmetric matrix can be found by diagonalising,
Mdiag

N =U∗MNU†. If the off diagonal terms due to electroweak symmetry breaking are small
relative to the other entries in the matrix then the mixing is small and the lightest neutralino
will be mostly bino-, Higgsino- or Wino-like. In all cases the lightest neutralino is the DM
and is a Majorana fermion.

Consider the annihilation of χ to a SM fermion/anti-fermion final state, χχ → f f̄ . Light
fermions in the SM have definite helicity and since they are made back-to-back in the centre
of mass frame the final state must have S = J = 1. The initial state must be odd under
particle exchange with the two lowest modes being L = 0, S = 0⇒ J = 0 and L = 1, S =

1⇒ J = 0, 1, 2. Thus the only way to have overlap between the initial and final state is if the
neutralinos annihilate in the P-wave, 〈σv〉 ∝ v2, or if there is a fermion mass insertion in the
final state.

Question 12. By writing down examples of Feynman diagrams that lead to neutralino
annihilation confirm that S-wave processes are all proportional to final-state fermion mass.

Rather than analyse in gory detail the prospects for the neutralino sector to be the origin of
thermal dark matter14, it is instructive to consider the case of the lightest neutralino being a
pure state. If the lightest neutralino is pure Bino then the dominant annihilation is into right-
handed leptons, since they have the largest hypercharge. This process proceeds through t-
channel exchange of sleptons with 〈σv〉 ∼ g4

Y M1T/(2πm4
ẽ), notice the factor of v2 ∼ T/m as

predicted by earlier arguments. To get the correct relic abundance the sleptons must be light
(but heavier than the bino), which is in tension with results from LEP requiring mẽ >∼ 100
GeV. As the bino and sleptons become heavier the annihilation cross section drops and there
is too much DM.

For Higgsino DM the largest annihilation modes are into W and Z gauge bosons (there is an
annihilation to heavy fermions too) and so the cross sections are considerably larger than for
bino, resulting in typically too little dark matter. The higgsino sits inside an SU(2) doublet so
comes with a partner state which is charged, whose mass is split from the neutral state only
through loop effects. At one loop, for states heavier than the W , Z, the one-loop splitting
between a neutral state and a state of charge Q in a multiplet with hypercharge Y is given

14It has been done elsewhere [57].
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[58] by,

∆M ≈ Q
(

Q+
2Y

cosθW

)
α2MW sin2 θW

2
. (4.22)

For a higgsino this splitting is ∼ 350 MeV and so at the freeze out temperature T ∼ m/20
these states will also be plentiful in the thermal bath. The relic abundance is sensitive to the
presence of these states since they can annihilate with the DM, in a process called coannihi-
lation which will be discussed in detail below, see Section 5.1. The approximate annihilation
cross section for higgsinos is 〈σv〉 ≈ g4

2/(512πµ2) and the correct relic abundance occurs
for µ ∼ 1.1 TeV.

So far I have discussed one light neutral state nearly degenerate with one charged state, but
there are actually two neutral states coming from the higgsino sector. In the absence of all
other masses these two neutral states, h̃0

u, h̃0
d , would make a Dirac fermion. Such a pure

higgsino would be ruled out as DM since it would have a large coupling to the Z boson and
should have been seen in direct detection. However, electroweak symmetry breaking mixes
the higgsinos with the bino and wino and splits the two neutral states. This splitting [59] is,

δH̃ ≈ m2
Z

(sin2
θW

M1
+

cos2 θW

M2

)
+O

( 1
M2

1,2

)
=

 192keV
(

107 GeV
M1

)
M2�M1� µ

640keV
(

107 GeV
M2

)
M1�M2� µ

(4.23)
Thus, unless the other neutralinos are very heavy there is a sizeable splitting between the two
neutral states. Interestingly, with very heavy bino and wino the splitting is comparable to the
kinetic energy of the incoming WIMP and the kinematics is altered. This is an example of a
scenario called inelastic dark matter [60].

The case of Wino DM is similar to the higgsino but with an even smaller charged-neutral
splitting δW̃ ≈ 166 MeV and a larger annihilation cross section 〈σv〉 ≈ 3g4

2/(16πM2
2). The

correct reclic abundance occurs for wino mass of∼ 3 TeV. One important difference between
the wino and higgsino is that the wino does not have a tree level coupling to the nucleus, so
can evade direct detection bounds. There is a loop induced spin-independent scattering cross
section [61, 62] but it is small.

Gravitino In exactly the same way that a spontaneously broken bosonic global symmetry gives
rise to a massless goldstone boson, spontaneously broken SUSY results in a massless gold-
stone fermion, the goldstino – recall Section 3.8. As discussed earlier, SUSY is a spacetime
symmetry and once gravity is included SUSY must become a local symmetry. Gauged SUSY
is commonly called supergravity, or SUGRA. In direct analogy to the eating of the goldstone
boson by the gauge boson associated with the gauged bosonic symmetry (thus giving the
gauge boson a mass) the goldstino is eaten in SUGRA. In this case the particle doing the
eating is the fermionic partner of the spin-2 graviton: the spin-3/2 gravitino.

For concreteness we will consider the SUSY breaking to come from a superfield X acquiring
an F-term vev, X ∼ Fθ 2. In this case the mass of the gravitino is given by m3/2 ∼ F/MPl.
This should be compared to the masses of, for example, the gauginos m1/2 ∼ F/Mmess, with
Mmess the scale of the messengers that communicate SUSY breaking to the SM fields. The
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couplings of the goldstino scale as 1/F . For low-scale SUSY breaking where the messenger
scale is far below the Planck scale the gravitino will be the lightest parity odd particle, and
will be (at least part of) DM.

Gravitino DM can be produced through two mechanisms: through decays of the next-to
lightest SUSY particle (NLSP), a non-thermal production mechanism, or thermal production
after inflation. The first mechanism is sometimes called the “superWIMP” scenario [63].
The lifetime for the decay of the NLSP into the gravitino is τNLSP→G̃ ∼

(
m5

NLSP/F2
)−1.

If this is longer than the timescale for NSLP freeze out we can approximately determine
the abundance of the gravitino by noting that every NLSP will decay into an LSP. Thus,
Ω3/2 = Ω1/2

m3/2
m1/2

. If this decay happens late the energetic SM states produced in the decay
can cause trouble, for instance they may dissociate primordial elements produced in BBN
[64].

The second production mechanism occurs when two particles in the thermal bath collide and
produce a gravitino. The gravitino production cross section is small σ ∼ g2m2

1/2/F2 and the
production rate is slow. The initial state of the universe has no gravitinos present (assuming
the inflaton does not directly decay into gravitinos) and the production rate is so slow that
they never get into thermal equilibrium. Thus, the annihilation processes can be ignored
compared to those of production and the Boltzmann equation that governs the evolution is,

ṅ3/2 +3Hn3/2 = 〈σv〉n2
rad , (4.24)

where the inverse process of gravitino annihilation (the term −〈σv〉n2
3/2) is ignored since the

number density of gravitinos is small. Since nrad ∼ T 3 and H ∼ T 2/MPl we can solve (4.24)
to find the abundance of gravitinos,

Y3/2 ∼
g2m2

1/2TR

m2
3/2MPl

(4.25)

where TR is the reheat temperature and is the highest temperature reached after the inflaton
decays. The abundance of gravitinos is dominated by its production at high temperatures and
inserting Y3/2 into (2.15) we see this places an upper bound on the reheat temperature.

Having described the DM candidates in SUSY we now very briefly discuss the other superpart-
ner masses. The charged components of the fields that make up the neutralinos also mix. Define
ΨT
± = (W̃+, h̃+u ,W̃

−, h̃−d ) which has a Lagrangian term −1
2 ΨT
±MCΨ± with

MC =


0 0 m2

√
2sβ MW

0 0
√

2cβ MW µ

m2
√

2cβ MW 0 0√
2sβ MW µ 0 0

 . (4.26)

It is easier to work with the non-trivial 2×2 block of MC, M. Since M is not symmetric it is diag-
onalised by two different unitary transformations, Mdiag = L∗MR†. The masses of the charginos,
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denoted by C̃i, χ̃
±
i or W̃±i , are given by

MC1,C2 =
1
2
[
|m2|2 + |µ|2 +2M2

W

∓
√(
|m2|2 + |µ|2 +2M2

W

)2−4|µm2−MW s2β |2
]
. (4.27)

Given the issues with generating the correct size for the µ-term, discussed earlier, one might won-
der if these problems are removed if the µ-term is somehow forbidden. However, notice that µ = 0
would lead to both a massless neutralino and a chargino below the W mass, which is ruled out
by LEP searches. However, extensions of the MSSM can be built that do not have a µ-term [65],
or where the µ-term is generated from SUSY breaking. The later case is a commonly discussed
extension of the standard model: the exension of the MSSM by a gauge singlet chiral superfield, S,
called the next-to-minimal supersymmetric standard model (NMSSM).

Question 13. By finding the eigenvalues of M†M confirm (4.27).

The sfermion masses receive contributions from various sources. I will discuss the case of the
stops, the other squarks and sleptons masses follow in analogous fashion, and I will also ignore
potential flavour violating contributions to the mass matrices. Working in the basis ΨT

t = (q̃3, ũc
3)

the stop mass matrix is

Mt =

(
M2

t +m2
q̃3
+∆q̃3 Mt(A∗t −µ cotβ )

Mt(At −µ cotβ ) M2
t +mũc

3
+∆ũc

3

)
. (4.28)

The soft scalar masses m2
q̃3

and mũc
3

arise from SUSY breaking as described in (4.11). The ∆ f̃ terms
arise from the SU(2)W and U(1)Y D-terms in the scalar potential. For example the relevant piece
of the U(1)Y D-term is −g′

2

(
|h0

u|2−|h0
d |2 +∑i f̃ ∗i Yi f̃i

)
. In general for a sfermion, f̃ , the D-term

contributions to the mass matrix are

∆ f̃ =
(
T3−Qsin2

θW
)

f̃ cos2βM2
Z . (4.29)

For third generation sfermions like the top there are F-term contributions, from the F-terms for
U3, Q3 and HU , these give the contributions proportional to µ in (4.28). Finally there are A-
term contributions [see (4.16)] where in (4.28) I have followed the oft-used convention of ai =

yiAi. Similar matrices exist for the other squark and sleptons, however for down-type squarks
and sleptons the down-type Higgs F-terms is involved, thus one must also make the replacement
tanβ ↔ cotβ . The mass matrix (4.28) must be diagonlised and the resulting mass eigenstates are
denoted t̃1 and t̃2 with the convention that m2

t̃1
< m2

t̃2
.

The only remaining superpartner left to discuss is the gluino. Since it is the only octet of colour
it has nothing to mix with and its mass is simply given by M3.

5. Supersymmetric Dark Matter

As mentioned in Section 4, the existence of relevant baryon- and lepton-number violating op-
erators in the MSSM superpotential necessitates the introduction of R-parity15. This approach has

15Actually, there are alternative approaches [41, 42] that allow R-parity to be broken without dangerous rates of
proton decay, leading to an unstable LSP, I will not discuss them further here.
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the happy byproduct of making the lightest superpartner absolutely stable, and in a large fraction
of parameter space the LSP has the correct properties to be the cosmological DM. We discussed
the possible candidates, along with the rest of the SUSY spectrum in Section 4.3. We now turn to
details of DM phenomenology within the MSSM, although many of the features we will discuss
show up in other WIMP models. We start by discussing freeze out in the MSSM, before turning to
ways to detect WIMP DM – directly, indirectly and at colliders. The definitive work on this topic
[66] is now somewhat dated but still a great reference.

5.1 Freeze out revisited

In Section 2 we discussed the freeze out of a single DM particle coupled to the thermal bath.
However, in the MSSM, and other models of BSM physics, it may not be sufficient to consider
just the evolution of the DM particle in isolation. The particle spectrum of SUSY is rich and the
DM may have companion states present in the bath, or couplings to other R-parity odd particles,
that dramatically alter its relic abundance. For instance, the neutralinos can have nearly degenerate
chargino partners, or squarks and sleptons maybe nearby in mass.

There are situations, for historical reasons dubbed “three exceptional cases” [67], that occur in
regions of parameter space that require more detailed analysis:

Coannihilation If there is another MSSM state with mass within a few percent of the DM mass
then its abundance at freeze out will not be negligible. For larger mass splittings the Maxwell-
Boltzmann suppression of the heavier state’s thermal abundance is large and it can be ig-
nored. The additional light state(s) can take part in annihilation and other processes that
determine the relic abundance. Such a situation is referred to as “coannihilation” and can
occur in the MSSM [68], for example where the DM bino coannihilates with a nearly degen-
erate stau.

Consider the general situation with N SUSY states whose abundances are non-negligible at
the time of freeze out, we label them as χ1...N with χ1 the lightest and ultimately all of the
DM. There are several classes of processes that can have impact on the final relic abundance:
co-annihilation of χiχ j,

σi j = ∑
X

σ(χiχ j→ X) , (5.1)

conversion through scattering,

σ
′
Xi j = ∑

Y
σ(χiX → χ jY ) , (5.2)

and conversion through decay,

Γi j = ∑
X

Γ(χi→ χ jX) . (5.3)

We denote SM states by X ,Y . The simple Boltzmann equation of (2.12) now becomes an
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intimidating system of coupled equations for each species,

dni

dt
+3Hni = −

N

∑
j=1
〈σi jvi j〉

(
nin j−neq

i neq
j

)
−∑

j 6=i

(
〈σ ′Xi jvi j〉

(
ninX −neq

i neq
X

)
−〈σ ′X jiv ji〉

(
n jnX −neq

j neq
X

))
−∑

j 6=i

(
Γi j
(
ni−neq

i

)
−Γ ji

(
n j−neq

j

))
. (5.4)

Note, however, that any of the heavier states, χ2...N will decay down to the LSP so the total
WIMP abundance is ∑i ni ≡ n. If we sum up all the equations we see that the second and
third lines in (5.4) sum to zero. Furthermore, the χi are kept in thermal equilibrium through
their scattering with SM states. Typically σ ′Xi j is comparable to σi j but nX � ni, since the
SM follows a relativistic distribution rather than the non-relativistic distribution of χi. This
means that the ni are thermal and ni/n = neq

i /neq. This then allows us to write a Boltzmann
equation for n = ∑i ni that is very similar to the single species case (2.12),

ṅ+3Hn = 〈σeffv〉
(
n2

eq−n2) , 〈σeffv〉= ∑
i, j
〈σi jvi j〉

neq
i

neq

neq
j

neq (5.5)

It is clear from (5.5) that states with mass near the WIMP mass, and therefore appreciable
thermal abundance, can alter the effective annihilation cross section. As an example, for
the pure bino/Higgsino/wino cases discussed in Section 4.3 coannihilation can be important.
For the bino there is possible coannihilation with the right-handed sleptons, for the pure
Higgsino or wino the charged and neutral states are nearly degenerate and taking into account
coannihilation is critical.

s-channel pole The annihilation cross section can be altered if there is a state whose mass is close
to twice the DM mass. The DM may annihilate through an s-channel resonance as can
occur, for instance, in the MSSM with a neutralino that is an admixture of gaugino and
higgsino annihilating through the A0 pole; the so-called “A/higgs funnel”. Consider a WIMP
annihilating through an s-channel mediator of mass M and width Γ, with annihilation cross
section

σv =
αs

(s−M2)2 +M2Γ2
. (5.6)

The freeze out of DM takes place with x∼ 20, so the speed of DM is β ∼ 1/3 and s∼ 4.4m2,
as opposed to the present day annihilation where v ∼ 0 and s ∼ 4m2. For mediator mass
around this centre of mass energy, M∼ 4m2, either present day or freeze-out annihilation can
be enhanced by ∼ m2/Γ2. Furthermore, when calculating thermally averaged cross sections
one must take care in integrating over the Boltzmann distribution since the cross section is
highly peaked for velocities that give s∼M2.

Forbidden channels The final of the three exceptions [67] is annihilation into “forbidden chan-
nels”. These are annihilations of DM into a final state that at zero velocity is not allowed. If
the channel χχ → XY is allowed by symmetries but mX +mY > 2mχ then it cannot happen
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with DM at rest. However, for freeze out the annihilations occur between WIMPs that have
a Maxwell-Boltzmann distribution, so there will always be particles in the tails of the distri-
bution with sufficient energy for this process to occur. If the mass splitting is not too large
and this process has a large cross section then the Boltzmann suppression may be overcome
and this “forbidden” channel can affect the relic abundance.

Solving for the DM abundance in the MSSM is a complicated business due to the complexity of the
spectrum and couplings, and the number of diagrams that contribute to the annihilation. Thankfully
computer codes such as DarkSUSY [69] and MicrOMEGAs [70] exist that can numerically solve
(5.4) taking into account these three exceptions.

Question 14. Co-annihilation a. If co-annihilation modes are available during freeze out
they can dramatically alter the final DM abundance. As shown in the text, including the additional
channels leads to an “effective” annihilation cross section,

〈σe f f v〉= ∑
i j
〈σi jvi j〉

neq
i

neq

neq
j

neq , (5.7)

with n=∑i ni. Consider the toy example of two states in the dark sector χ1,2 where m1 <m2. χ1 has
only weak interactions whereas χ2 has strong interactions. We thus take the various annihilation
cross sections to be in the ratios 〈σ22v〉= αs

α
〈σ21v〉=

(
αs
α

)2 〈σ11v〉. Show that

〈σe f f v〉= 〈σ11v〉
(

1+ αsω
α

1+ω

)2

(5.8)

with ω = (1+∆)3/2e−∆xg2/g1, ∆ = (m2−m1)/m1. How close do the masses of χ1 and χ2 have to
be for the presence of χ2 to have an appreciable effect on the relic abundance?

Question 15. Co-annihilation b. Consider another interesting limit where there is little actual
co-annihilation but the second state still impacts the final abundance, namely σ12� σ11, σ22. Show
that this can lead to a smaller effective cross section, therefore larger relic abundance. Explain what
is going on physically.

5.2 Direct detection

As discussed in Section 1.1 there is strong evidence that our Galaxy is surrounded by a large
halo of non-relativistic DM. Since WIMPs have couplings to SM particles there is a rate for
the halo WIMPs to scatter off atoms in terrestrial laboratories [71]. Looking for such events is
the purpose of direct DM detection which now consists of many experiments located around the
globe using different target elements and detection technologies to search for this signal e.g. (Su-
per)CDMS [72, 73], CoGeNT [74], COUPP [75], CRESST [76], DAMA/LIBRE [77], KIMS [78],
XENON(1T)[79, 80]. For a WIMP of weak scale mass the scattering is off nuclei, but for lighter
masses electron scattering is the dominant process. We focus on nuclear scattering here, for more
discussion of electron scattering and direct detection in general see Tongyan Lin’s lectures in this
volume. For a review of the techniques presented in this section see [81].
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The first input needed to determine the scattering rate is the amount of dark matter in our
vicinity [82, 83]. While there are various models of how DM is distributed, with respect to radius, in
our Galaxy most agree on the DM density in our neighbourhood, partially because we assume about
50% uncertainty on the value! Historically the local DM density was taken to be ρ ∼ 0.3GeVcm−3

and this is still what is extracted from analysing the motions of local stars [84]. Recently global fits
[85] have found ρ ∼ 0.4GeVcm−3, but direct detection results are still mostly presented assuming
ρ ∼ 0.3GeVcm−3.

Question 16. DM Flux If Dark Matter is a 100 GeV WIMP approximately how many Dark
Matter particles pass through your hand every second? Compare this to the number of solar neutri-
nos.

The second input we need to know is how this DM is moving in our Galaxy. Here we cannot
use measurements of DM’s gravitational action on stars to infer its speed, so instead we turn to
general arguments and N-body simulations [86]. An isotropic spherical halo is expected to have
a speed distribution that is Maxwell-Boltzmann in form, f (v) ∼ e−v2/v2

0 . This is qualitatively sup-
ported by N-body simulations but there can be significant quantitative deviations, especially at high
DM speeds [87]. It should be noted that N-body simulations do not have the capability to resolve
the halo structure on the length scales probed by our experiments, they can only make average
statements. So the first true determination of the DM halo will be through direct detection of DM
itself. This has led to recent interest in “halo-independent” techniques [88, 89]. For the purposes
of interpreting direct detection results, and for these lectures, it is common to make the simplify-
ing assumption that the local DM distribution follows the standard halo model (SHM) [90], the
spherical cow of DM distributions,

(SHM) ρ = 0.3GeVcm−3, f (~v) = N e−|~v|
2/v2

0 Θ(vesc−|~v|) (5.9)

where the velocities are in the Galactic frame, rather than the frame of the Earth, and the nor-
malisation factor N is fixed by requiring

∫
d3v f (~v) = 1. Typically values for the circular rotation

speed and the escape speed are v0 = 220kms−1 and vesc = 544kms−1. It should be emphasised
that the SHM is only an approximation to the real situation. There will be corrections coming from
observed Galactic substructure e.g. [91].

Finally, searches for DM take place on the Earth so we need to determine the incoming DM
speed distribution in the Earth frame. Since all motions are non-relativistic this is done through a
Galilean boost by the Earth’s velocity in the Galactic frame, ~u(t). Thus, the speed distribution in
the Earth’s frame is f⊕(~v,~u) = f (~v+~u). The motion of the Earth is a combination of the Sun’s
motion in the Galaxy and the Earth’s motion around the Sun, ~u(t) =~v⊗+~u⊕(t), the later varies
over a sidereal year. The direction of these motions [92] is such that the magnitude of ~u varies by
∼ 10% over a year.

The kinematics of the DM-nucleus collision are straightforward. In the lab frame a non-
relativistic WIMP of mass m and incoming speed~v collides with a stationary nucleus of mass mN

which recoils with energy ER and momentum ~q. In the centre-of-momentum frame, where~v is the
relative velocity of the two incoming particles, the incoming momentum is ~p= µ~v and the outgoing
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momentum is ~p ′. We introduce the reduced mass defined with respect to the incoming particles,

µ ≡ mχmN

mχ +mN
. (5.10)

The recoil energy of the collision is ER = q2/2m′N with

q2 = p2 + p′2−2p p′ cosθcom . (5.11)

In general the outgoing WIMP and nucleus may be of different mass than the incoming particles,
with splitting δχ ≡m′χ−mχ and δN ≡m′N−mN , respectively. The recoil of energy ER, speed v and
cosθlab are related by,

v2

2
δχ

mχ

mχ ′
− v

mχ

mχ ′

√
2mN′ER cosθlab−

[
ER

(
1+

mN′

mχ ′

)
+δχ +δN

]
= 0 . (5.12)

Defining δ ≡ δχ + δN and assuming δ > 0, we can safely perform an expansion in δ/m� 1 to
obtain

vmin =
1√

2mNER

(
mNER

µ
+δ

)
. (5.13)

Taking δN → 0 this is the well-known result for inelastic dark matter (iDM) [60, 93, 94]. For most
SUSY WIMP models the WIMP candidate undergoes only elastic scattering and δ = 0. Inserting
typically WIMP masses and speeds of DM in our halo we see that the recoil momentum is q ∼
10− 100MeV, the recoil energy is ER ∼ 1− 10keV, and that the energy deposited by the signal
is very feeble. This means that the scattering takes place off the whole nucleus at low momentum
exchange but may be off only a fraction of the nucleons at high q. This loss of coherence will be
taken into account through a nuclear form factor.

The last remaining input we need is the DM-nucleus scattering cross section. The WIMP
couples to quarks and gluons which are components of the nucleus and we must match these fun-
damental couplings to interactions with protons and neutrons using nucleon matrix elements. From
there we calculate the WIMP-nucleus scattering amplitude, which introduces nuclear form factors.
Throughout this process we should recall that the scattering is non-relativistic and the momentum
exchange is small. For the case of SUSY WIMPs, and many other models, where the mediators
are heavy and can be integrated out, the matching is done between higher dimension operators in a
WIMP EFT, making the results widely applicable.

In SUSY the WIMP is a Majorana fermion and so does not have vector interactions with
quarks, instead the interactions are either scalar, through Higgs or squark exchange, or spin-
dependent, through Z exchange or squark exchange. Some example processes contributing to direct
detection cross sections for WIMPS are shown in Figure 7. The tree-level Higgs exchange is domi-
nated by the strangeness content of the nucleon [95] while the loop diagrams with Higgs exchange
involve heavy quark loops.

The spin-dependent processes will lead to effective operators of the form,

LSD =
κ

Λ2 χ̄γ
µ

γ5χ q̄γµγ5q (5.14)

while the spin-independent gives effective operators include

LSI =
λ1

Λ2 χ̄χ q̄q+
λ2

Λ3 χ̄χGµνGµν . (5.15)
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Figure 7: Some example diagrams for a neutralino scattering off components of a nucleon. The first two
diagrams contribute to spin-independent scattering the third to both spin-independent and spin-dependent
and the last only to spin-dependent.

The coefficients in the above couplings are determined by calculating the relevant Feynman dia-
grams. Once these are known we match the quark or gluon level operator, e.g. q̄Γq, to the nucleon
operators by calculating the nucleon matrix elements e.g. 〈n|q̄Γq|n〉. Finally we match to the nu-
clear system. At zero momentum transfer this is done by evaluating the nucleon-level operators in
the nucleus but at higher momentum transfer we must also include a form factor which accounts
for the fact that the WIMP only resolves a piece of the nucleus, of size |~q|−1. For spin-dependent
operators the nucleon spin operator evaluates (at ~q = 0) to the spin of the nucleus, which is the
spin of the unpaired nucleons and is typically not large. Evaluating the spin-independent nucleon
operators on the nucleus just count the number of protons and neutrons. Thus, spin-independent
couplings acquire a coherent enhancement of Z2, (A−Z)2, or A2, from coupling to all protons, neu-
trons, or both, respectively. This means that constraints on spin-independent couplings are stronger
than spin-dependent and benefit from using target atoms of large A. For this reason we will now
concentrate on the spin-independent case.

We parametrize the scalar WIMP-nucleon operators after matching to the proton and neu-
tron level operators as fpχ̄χ p̄p + fnχ̄χ n̄n. These in turn map to nuclear-level operators as
(Z fp +(A−Z) fn) χ̄χN̄N. Finally, we can carry out a usual tree level field theory calculation for
χ−N scattering and take the non-relativistic limit to arrive at the differential cross section,

dσ

dER
=

mN

2πv2 (Z fp +(A−Z) fn)
2 |F(ER)|2 (5.16)

where we have included the form factor. To facilitate comparisons of results from detectors using
different target materials this is often expressed in terms of a per-nucleon scattering cross section.
The relationship between these can be found by ignoring the form factor in (5.16) and calculating
the total cross section σN = µ2

Nχ
(Z fp +(A−Z) fn)

2 /π , where µNχ = mNmχ/(mN +mχ) is the
WIMP-nucleus reduced mass. A similar calculation for the per nucleon cross section would replace
µNχ with µnχ and not have the A enhancement. Thus,

σN =
(Z fp +(A−Z) fn)

2

f 2
p

µ2
Nχ

µ2
pχ

σp . (5.17)
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Figure 8: Status of spin-independent direct detection searches, taken from the PDG [96].

The differential DM scattering rate is determined by putting all of the above discussion to-
gether,

dR
dER

= NT
ρ

m

∫ vmax

vmin

d3v f⊕(~v,~u(t))
dσ |~v|
dER

. (5.18)

Of course, what experiments actually observe will be this theoretical prediction convolved with
the detector response, efficiencies etc, which we will not concern ourselves with here16. At present
the majority of the direct detection experiments see no DM-like events, with the notable (and long
standing) exception of DAMA/LIBRA [77]. By comparing the lack of observation with (5.18)
constraints can be placed on the WIMP-nucleon cross section. The present status is summarised in
Figure 8. At WIMP masses of around 10GeV the bounds are approaching the “neutrino floor”, an
irreducible background coming from coherent neutrino scattering, while at higher masses we have
some way to go. At low masses the background comes from solar neutrinos and at higher masses
from a combination of (predominantly) atmospheric and diffuse supernova neutrinos.

Question 17. Minimal DM The “original” WIMP was a particle coupled to the Z. Show
that the direct detection scattering cross section off a nucleus A

ZN through Z exchange for a Dirac
fermion with hypercharge Y is

σ(χN→ χN) =
G2

FM2
N

2π
Y 2 (N− (1−4s2

W )Z
)2

(5.19)

16In the words of Yogi Berra, “In theory, there is no difference between practice and theory. In practice, there is”.
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Question 18. A model for Inelastic Dark Matter By decomposing a Dirac 4-spinor as two
2-spinors,

ψ =

(
η

ξ̄

)
(5.20)

Determine the mass eigenstates for a mass term of the form mψ̄ψ + δ1
2 (ηη + η̄η̄)+ δ2

2

(
ξ ξ + ξ̄ ξ̄

)
.

Assume there is a coupling to a vector boson, Aµ , of the form ψ̄γµAµψ . Determine what this is in
terms of the mass eigenstates.

Question 19. Inelastic Dark Matter in Direct Detection The rate equation for direct detection,
ignoring experimental effects like efficiencies, thresholds etc, is

dR
dE

=
NT mNρχ

2µ2
Nχ

mχ

∫ vesc

vmin

d3v
f (v,v⊕)

v
σNF2(E) . (5.21)

Use the Standard Halo Model to draw the shape of the recoil spectrum (ignore the form factor) for
a) elastic DM and b) inelastic DM. Is the modulation expected to be larger or smaller for iDM?

Question 20. Modulation signals Consider the Earth’s daily rotation and its orbit around the
Sun. Compare these modulating velocities to the Sun’s motion in the Galaxy. Estimate how big the
daily modulation signal at DAMA would be.

We now return briefly to the origin of the WIMP-SM couplings in SUSY. Consider the situation
with heavy squarks and the Higgs sector in the decoupling limit (mH,A � mh, so that the only
mediators contributing to the direct detection rate are the SM higgs, h, and the Z boson. Recall that
the more strongly constrained spin-independent rate comes from h exchange and spin-dependent
from Z exchange. For effective couplings,

chχχ

2
h
(
χχ +χ

†
χ

†)+ cZχχ χ
†
σ̄

µ
χZµ (5.22)

the approximate scattering cross sections are

σSI ∼ 10−42c2
hχχcm2, σSD ∼ 10−37c2

Zχχcm2 . (5.23)

The Higgs-neutralino, chχχ , coupling comes from the Kähler potential and is off-diagonal in field
space, H†eV H → hh̃W̃ , hh̃B̃, so pure WIMP states do not have a tree-level SI scattering cross
section. For non-pure states it is still possible to have a small coupling at a so-called “blind spot”
[97]. If the neutralino has a coupling to the Higgs it has a contribution to its mass from the Higgs
vev, ∂mχ/∂v = chχχ . First note that if chχχ = 0 then the WIMP mass is the same as it would be
with no electroweak symmetry breaking, namely mχ = M1,M2,or− µ . Secondly, recall that the
neutralino mass is determined by finding the eigenvalues of the neutralino mass matrix (4.21), i.e.
solutions to the equation det

(
MN−mχ1

)
= 0. Taking the derivative of the eigenvalue equation

w.r.t the vev we find the Higgs-neutralino coupling is zero if

(
mχ +µ sin2β

)(
mχ −

1
2
[M1 +M2 + cos2θW (M1−M2)]

)
= 0 . (5.24)
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Figure 9: The shape of NFW, Einasto and Burkert DM profiles. The parameters for each have been chosen
so that ρ(r = 0.8kpc) = 0.3GeVcm−3.

Thus, there is a blind spot in parameter space for SI direct detection if mχ = M1, M2,−µ if mχ +

µ sin2β = 0 (which will require certain sign choices between parameters) or at mχ = M1 = M2.
Similarly, there is a blind spot for SD couplings. Only the Higgsino couples to the Z boson so
the WIMP-Z coupling, cZχχ , must arise from the Higgsino component. For tanβ = 1 there is an
enhanced Hu↔ Hd symmetry and the Z coupling is off diagonal between 1√

2
(H̃0

u ± H̃0
d ), as for the

pure Higgsino state.
These blind spots will be moved around slightly by loop corrections but will still exist. There

can also be other blind spots, for instance if we move away from the decoupling limit there could be
cancellation between h and H exchange [98]. Although these blind spots appear to be bad news for
direct detection it is still possible to discover DM in these scenarios by looking in complementary
places e.g. the LHC, indirect detection, and SD detection for SI blind psots [99].

Question 21. Non-relativistic limits Consider fermionic DM χ coupled to SM fermions
f . What are the low velocity limits of the interactions (a) χ̄χ f̄ f , (b) χ̄γµγ5χ f̄ γµγ5 f , and (c)
χ̄γµγ5χ f̄ γµ f ?

5.3 Indirect detection

The thermal production of DM provides a compelling “origin story” for the main protagonist
of these lectures. We will now discuss searching for DM through the same annihilation processes
that determined its abundance, but taking place now rather than a few instants after the big bang.
There are many reviews on this topic, a very comprehensive presentation of the field is given in the
“cookbook” [100], and a more detailed account of the present status, including the Galactic Centre
Excess (GCE), can be found in the lectures by Hooper in this volume [101].
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The present day annihilation of WIMP DM leads to energetic SM particles, in particular an-
tiparticles, in the cosmos – which is a signal that can be searched for. The rate scales as ∼ ρ2 so
it is most productive to look for the appearance of high energy antiparticles or photons in places
where there is a high DM density. For a sense of how DM is distributed in our Galaxy see Figure 9,
where three commonly assumed DM profiles are shown. The “cuspy” profiles of NFW [102] and
Einasto [103, 104] have a large increase in density towards the Galactic centre, whereas the “cored”
profile of Burkert [105] has less of an enhancement. The functional form of each of these profiles
is

ρNFW =
ρs

r
rs

(
1+ r

rs

)2 , (5.25)

ρEinasto = ρs exp
(
− 2

α

[
rα

rα
s
−1
])

, (5.26)

ρBurkert =
ρs(

1+ r
rs

)(
1+ r2

r2
s

) , (5.27)

where in all cases the parameters associated with the profiles have been chosen to reproduce the
observed density at the Sun’s radius [100].

Regardless of which profile is closer to the truth it is clear that the Galactic centre is an inter-
esting place to look for DM annihilation. Our Galaxy also has a set of smaller companion satellites
which are rich in dark matter and relatively poor in stars. These dwarf galaxies also provide an
opportunity to search for the DM annihilation products. Although further away than the Galactic
centre they have fewer other sources of high energy particles so offer complementary systematics
to the Galactic centre.

After deciding where to look one must decide what to look for. As already mentioned, an-
tiparticles are not common in the Galaxy but DM annihilation is symmetric between particle and
anti-particle production. Thus, we look for positrons, antiprotons, anti-deuterium, etc in high en-
ergy cosmic ray fluxes. The source flux, Q, of these particles is determined by the abundance of
DM and the annihilation modes

Q =
1
2

(
ρ

mχ

)2

∑
f
〈σv〉 f

dN f
e±, pp̄...

dE
, (5.28)

here dNi/dE is the energy spectrum of charged particle i that comes out of DM annihilation. This
is often determined through computer programs like PYTHIA [106] since the long-lived charged
particles are often the products of a complicated decay chain often involving showering and hadro-
nisation.

The propagation of these charged particles from source to detectors at (or in an orbit of) Earth
is complicated and is governed by a diffusion-loss equation. Charged particles move through the
Galaxy diffusing on inhomogeneities in the magnetic field and losing energy through synchrotron
radiation, inverse Compton scattering on CMB and starlight photons, and colliding with gas. Cor-
rectly modeling all of this requires many parameters which are not all well known. The discussion
of the details of this are beyond these lectures, but are well covered in the lectures of Hooper [101].
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Annihilation mode Comments Example experiments

pp̄, e+e−, . . . Antimatter in cosmic rays. Non-pointing, propa-
gation determined by diffusion-loss equation.

PAMELA, AMS2, Fermi

νν̄ Pointing. Hard to detect. Icecube, Antares, SuperK
γγ Pointing. Spectrum is a line (Eγ ≈ m/2). Low

rate (loop process).
Fermi, HESS

SMSM → γ + X
e.g. π0, b, τ

Pointing. Energy spectrum is continuum with
edge. Complicated backgrounds.

Fermi, HESS

Table 4: Summary of ways in which DM annihilation can be searched for.

Instead, we briefly turn to the case of annihilation to photons where transit effects are less impor-
tant and futhermore there is an interesting excess in the Galactic centre [107, 108]. A summary of
the various approaches is given in Table 4.

The differential flux of photons produced in DM-annihilation coming from direction ψ is given
by

dΦ

dEγ

(Eγ ,ψ) =
1

4π

∫
∆Ω

∫
l.o.s

dl
1
2

(
ρ(r(l,ψ))

mχ

)2

∑
i
〈σiv〉

dNi

dEγ

. (5.29)

The energy spectrum of photons per annihilation is dNi/dEγ . The line-of-sight integral, denoted as
J =

∫
l.o.s dl ρ(l)2, determines which places are the best to look for these photons. Note that when

observing solid angle ∆Ω the amount of DM being observed grows with the square of the distance
from the observer, but the fraction of the annihilation flux that reaches the observer also drops as
this distance squared. Thus, for constant DM density all distances are equally important. Ideally,
we would like to look at high density sites that are nearby. As discussed before, this means the the
Galactic centre and dwarf galaxies.

The photon spectrum one expects depends on the model. A neutralino has no direct coupling
to photons but can have a loop induced annihilation to a pair of photons, for instance through a
loop of W±’s, or to a photon and another weak boson, generically denoted φ . This leads to the
very distinctive signature of a photon line at Eγ = mχ or Eγ = mχ

(
1−m2

φ
/4m2

χ

)
, but the rate

is very small. Alternatively, photons can be generated when DM annihilates to SM states which
subsequently decay or shower and hadronise. For instance if DM annihilates to a pair of W ’s
these in turn decay to a mixture of quarks and leptons. The quarks shower and hadronise which
makes boosted π0’s which in turn decay to photons. The spectrum of these photons is not as
distinctive as a line, instead it is a broad spectrum which ends at mχ , however it is something that
can be searched for. Annihilations into other SM states, such as bb̄, τ+τ− give qualitatively similar
spectra although the quantitative details differ. Intriguingly, an excess of photons from the Galactic
centre has been observed [107, 108] and appears to be well fit by a DM particle of 40− 70GeV
annihilating to bb̄ with annihilation cross section comparable to that expected for a thermal relic,
〈σv〉 ∼ 10−26cm3 s−1. Finally, in dark sector models with a dark sector mediator φ coupled to DM
there can be annihilations of the form χχ → φφ → 4γ that gives a distinctive box-like spectrum
for the photons. This spectrum is flat between the end points E± = mχ

(
1±
√

1−m2
φ
/m2

χ

)
. These

46



WIMPs and Supersymmetry Patrick J. Fox

Figure 10: The photon spectra (in arbitrary units) expected for 200 GeV DM annihilating in various modes.
From left left to right these modes are: χχ→W+W−, χχ→ φφ→ γγ (mφ = 150GeV), χχ→ Zγ , χχ→ γγ .

example spectra are shown in Figure 10. Note that it is typical to show spectra weighted by E2, i.e.
to plot E2dN/dE since backgrounds scale as E−(2−3).

5.4 Capture in the Sun

Another location where there may be a large amount of DM is at the centre of celestial bodies,
e.g. the Sun [109], Earth [110], or large planet. If a DM particle from the halo scatters with a
nucleus in one of these bodies and loses enough momentum that its speed falls below the escape
speed it will be captured and will, through subsequent scatters and loss of energy, sink to the
centre of the gravitational potential. Overtime a DM overdensity will build up and there will be an
enhanced annihilation rate. In order to be able to observe this annihilation the annihilation products
must be able to reach us from the centre of the object, which means that the DM annihilation must
lead to high energy neutrinos. For concreteness we focus on capture in the Sun and outline the
capture of DM and subsequent neutrino production below. As for indirect detection there is a
comprehensive “cookbook” that outlines in detail the recipe for computing the DM signal [111].

There are three competing processes that determine the abundance of DM in the Sun: DM
capture, its annihilation, and its evaporation. Denoting the rate for each process as Γi the evolution
of DM in the Sun is

dN
dt

= Γcapt−2Γann−Γevap . (5.30)

If the DM is thermalised at the centre of the Sun, where the temperature is T� = 1keV, then for
light DM its thermal motion will be above the escape speed, vesc ∼ 1400kms−1, and the DM will
evaporate. A careful analysis shows that for DM heavier than ∼ 4GeV there is not enough DM in
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the high speed tail of the Boltzmann distribution for evaporation to take place on timescales shorter
than the age of the Sun and Γevap can be ignored.

To make progress we will make some simplifying assumptions: the Sun is a uniform density
ρ� ≈ 150gcm−3 and that the DM has thermalised in the Sun and therefore its number density is
given by n = n0e−mφ(r)/T where φ(r) =

∫ r
0 dxGNM(x)/x2 is the gravitational potential in the Sun.

For the constant density assumption the contained mass M has a simple form, M(r) = 4πr3ρ�/3.
Thus, one finds,

n = n0e−r2/r2
DM , rDM =

(
3T�

2π GNρ�mχ

)1/2

≈ 0.01

√
100GeV

mχ

R� . (5.31)

The DM is confined to a very small sphere at the centre of the Sun. Any annihilation products will
point back to this small point source, which will be a useful way to remove isotropic backgrounds.
Knowing the DM distribution we can calculate the annihilation rate,

Γann =
1
2

∫
Sun

d3rn2〈σv〉 ⇒ Γann =
1
2
〈σv〉

(
GNmχρ�

3T�

)3/2

N2 ≡ 1
2

CannN2 . (5.32)

With the expression for the annihilation rate (5.32) we can now solve (5.30), ignoring the effects of
evaporation and assuming DM only captures through scattering off the Sun not through previously
captured DM, to find

N =

√
Γcapt

Cann
tanh

t
τ

t�τ−−→
√

Γcapt

Cann
, (5.33)

where τ−2 = ΓcaptCann. It turns out that the age of the Sun is greater than the relevant timescale τ

and the DM has reached equilibrium. This is not true for the Earth. Inserting the result of (5.33)
in (5.32) we find that in the equilibrium the annihilation rate is set by only the capture rate; DM
annihilates away as fast as it arrives.

It remains to determine Γcapt, which is a complicated calculation [112, 113, 109] and is given
by,

Γcapt = nχ ∑
i

σi

∫ R�

0
dr 4πr2ni(r)

∫
∞

0
dv4πv2 f�(v)

v2 + v�esc(r)2

v
Pcap , (5.34)

where Pcap ∼ (∆Emax−∆Emin)/∆Emax is the capture probability and ∆Emin,max is the minimum
(maximum) energy loss necessary for capture 17. In (5.34) f�(v) is the DM speed distribution in the
Sun’s frame and v�esc(r) is the speed necessary to escape from radius r inside the Sun. The capture
off all elements in the Sun is summed in (5.34), but it is dominated by SD scattering off hydrogen.
Using models for the distribution of elements within the Sun, assuming a Maxwell-Boltzmann
velocity distribution and making other simplifying assumptions [111] leads to an approximate, but
more illuminating, expression for the capture rate

Γcapt ≈ 6×1026s−1
(

ρ

0.3GeVcm−3

)(100GeV
mχ

)2(270kms−1

v0

)(
σSD +1200σSI

pb

)
. (5.35)

17These minimum and maximum energies are given by ∆Emax = 4mNmχ/(mN +mχ )
2 and ∆Emin = v2/(v2+v2

�esc).
As expected this favours capture of slow moving DM.
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Given the direct detection constraints on spin-independent and spin-dependent scattering cross
sections the spin-dependent scattering off hydrogen (and to a lesser extent nitrogen) are the most
important for capture.

The final step in getting to the signal of DM annihilation in the Sun is to determine the spectrum
of annihilation products. The only particle species that can make it from the centre of the Sun to
Earth is neutrinos, and their spectrum will depend upon the annihilation process. In a similar
fashion to indirect detection, Section 5.3, this can be determined by running codes like PYTHIA.
The only complication is that the outgoing SM particles are moving in a material. These effects
must be modelled as well [111]. In most models the DM does not annihilate to a pair of neutrinos
so there is no line, instead there is a continuum coming from decays of the annihilation products
(e.g. χχ →W+W−→ `ν + . . .). Charged lepton decays involve a neutrino, but the muon will stop
before decaying, while the tau decays in flight and provides a higher energy neutrino. In addition
to the annihilation products propogating through solar matter, the neutrinos, once produced, also
have to transit through the Sun and intervening space to the Earth. In doing so they will oscillate
and this must also be taken into account, but a discussion of this is beyond these lectures. Finally,
upon arrival at the Earth detectors like SuperKamiokande [114], IceCube [115], etc can look for
high energy muon neutrinos pointing back to the Sun.

Question 22. Capture of DM in the Sun, or elsewhere DM may be captured in the Sun, Earth,
or other dense object. Although calculating the capture rate is challenging, as we have seen, it
is straightforward to determine the evolution of number of DM particles with time. There are 3
competing effects, capture (Γcap), annihilation (Γann), and evaporation (Γevap). Without worrying
about the details of the rate determine its scaling with the number of DM particles in the Sun, i.e.
determine p for each process with Γ∼ N p. Then solve the evolution equation. Consider the limits
where evaporation can be ignored, and where all processes are comparable.

5.5 WIMPs at colliders

The previous search strategies have relied upon measuring the ambient DM in one way or
another. However, if DM is coupled to the SM, and light enough, then it may be possible to produce
it at a sufficient rate to observe it at colliders like the LHC. There is a parity making the DM stable
meaning it is produced in pairs. Furthermore, by definition, it has very feeble interactions with
the SM so once produced it leaves the detector unmeasured. Thus, DM manifests itself as missing
energy and momentum. At hadronic machines, where only transverse momentum, ~pT , can be
reconstructed, DM looks like an imbalance among the ~pT of the visible particles, often denoted
/ET .

Since DM has such weak interactions, in many models it is most easily made through the
decay of some more strongly coupled state in the dark sector. For example, SUSY neutralino DM
will appear as the final decay product of squarks or gluinos. Depending on the exact spectrum of
the SUSY model this decay will result in various numbers of jets, leptons, electroweak bosons, and
/ET . There are numerous searches for strong production of SUSY particles that decay down to DM
at both ATLAS [116] and CMS [117]. Bounds on strong production are now approaching several
TeV, if the neutralino is light.
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If an excess of events involving /ET is seen at the LHC we cannot be sure that the missing
energy is really DM since the time it takes the particle to transit the detector is only a (rather weak)
lower limit on its lifetime. Ultimately, if an excess is found, the dream will be to measure the
properties and couplings of the new states with sufficient accuracy that we can determine if the
particle associated with the /ET is truly the cosmological DM.

As the constraints on coloured superpartners become stronger it is tempting to imagine that
perhaps they are beyond the reach of present machines but that the electroweakinos, which are
produced at far lower rates, are still light. As we saw in Sections 4.3 and 5 the electroweakino sector
provides a viable and interesting DM sector, where it is possible for the lightest neutralino to be a
thermal relic. This remains true if the rest of the SUSY spectrum is decoupled [118, 57]. Restricting
to the part of the four dimensional (M1, M2, µ , and tanβ ) where the correct relic abundance is
achieved one finds that, as discussed earlier, the splitting between the LSP and the NLSP is often
small. The lack of coloured states and the small splitting among the lightest electroweakinos leads
to a set of search strategies that we now briefly discuss.

Pair production of the lightest neutralinos leads to a very empty event. If the neutralino system
is made in association with some hard initial state radiation (ISR), typically a gluon (jet) or photon
then the χ’s will be boosted and the event will have a hard jet/photon and nothing else. Such
mono-jet/photon events can be used to search for DM production in general models [119, 120] as
well as in SUSY [121]. Production of the LSP in association with the lightest chargino can lead
to the “disappearing track” signature. When the chargino-LSP mass splitting is small the chargino
can be long lived and decays to the LSP and a soft pion after propagating a macroscopic distance.
The pion is missed and what is observed is a charge track ending in the detector. For larger, but
still ∆m <∼ 50GeV, splittings the decay from NLSP to LSP will be through off-shell electroweak
gauge bosons and will result in soft leptons, another useful signature [121, 122]. Finally, over
the small splitting part of the parameter space even radiative decays, χi→ χ j + γ , can be important
[118]. A detailed discussion of the collider phenomenology of SUSY WIMPs, at present and future
machines, is beyond the scope of these lectures, we refer the interested reader to the literature.
However, a combination of direct detection, indirect detection and collider searches at a 100 TeV
machine will hopefully be able to uncover DM if it is a thermal relic neutralino [57].

Question 23. Relativistic limits, DM@colliders Consider fermionic DM χ coupled to SM
fermions f . What are the production cross sections for DM at a collider through each of these
interactions (a) χ̄χ f̄ f , (b) χ̄γµγ5χ f̄ γµγ5 f , and (c) χ̄γµγ5χ f̄ γµ f ?

6. Conclusions

Unfinishedness avoids the stupidity of conclusions
–Pierre Senges

Although these lecture notes have only scratched the surface of what is (several) vast sub-
ject(s) it is my hope that they contain enough information (and motivation!) for you to set off on
your own. Dark Matter is one of the biggest puzzles in present day particle physics and is under
simultaneous assault from theorists and experimentalists. Supersymmetry is a beautiful idea that
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lays the groundwork for many of the scenarios of BSM physics. A breakthrough may occur in
either area at any time and hopefully these lectures will help you prepare for it.

However, there are many topics that I didn’t cover, because of lack of time, some of which
will be covered elsewhere in this volume. Others will require independent study on your behalf.
A large, and somewhat overwhelming, document that contains descriptions of the situation with
regard to non-WIMP DM, as well as references to many classic papers is Ref. [123]. The “SUSY
Primer" [28] is the best way into the supersymmetric world and will quickly fill in many of the
details omitted in these lectures, as well as bring you close to the cutting edge. I encourage you to
forge your own way through the DM and SUSY literature and hopefully these lectures can be your
initial guide into this exciting realm.
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